1 |
BOZELL J J, PETERSEN G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited[J]. Green Chemistry, 2010, 12(4): 539-554.
|
2 |
LI X C, ZHANG Y Y, XIA Q N, et al. Acid-free conversion of cellulose to 5-(hydroxymethyl)furfural catalyzed by hot seawater[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3545-3553.
|
3 |
MERCADIER D, RIGAL L, GASET A, et al. Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde catalysed by cationic exchange resins. Part 1. Choice of the catalyst and the characteristics of the reaction medium[J]. Journal of Chemical Technology & Biotechnology, 1981, 31(1): 489-496.
|
4 |
FABA L, GARCÉS D, DÍAZ E, et al. Carbon materials as phase-transfer promoters for obtaining 5-hydroxymethylfurfural from cellulose in a biphasic system[J]. ChemSusChem, 2019, 12(16): 3769-3777.
|
5 |
姜楠, 齐崴, 黄仁亮, 等. 生物质制备5-羟甲基糠醛的研究进展[J]. 化工进展, 2011, 30(9): 1937-1945.
|
|
JIANG Nan, QI Wei, HUANG Renliang, et al. Research progress of synthesis of 5-hydroxymethylfurfural from biomass[J]. Chemical Industry and Engineering Progress, 2011, 30(9): 1937-1945.
|
6 |
ROMO J E, BOLLAR N V, ZIMMERMANN C J, et al. Conversion of sugars and biomass to furans using heterogeneous catalysts in biphasic solvent systems[J]. ChemCatChem, 2018, 10(21): 4805-4816.
|
7 |
SAHA B, ABU-OMAR M M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents[J]. Green Chemistry, 2014, 16(1): 24-38.
|
8 |
ESTEBAN J, VORHOLT A J, LEITNER W. An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: a rational selection of solvents using COSMO-RS and selection guides[J]. Green Chemistry, 2020, 22(7): 2097-2128.
|
9 |
QI X, WATANABE M, AIDA T M, et al. Efficient catalytic conversion of fructose into 5-hydroxymethylfurfural in ionic liquids at room temperature[J]. ChemSusChem, 2009, 2(10): 944-946.
|
10 |
YANG L, YAN X P, XU S Q, et al. One-pot synthesis of 5-hydroxymethylfurfural from carbohydrates using an inexpensive FePO4 catalyst[J]. RSC Advances, 2015, 5(26): 19900-19906.
|
11 |
ROMÁN-LESHKOV Y, CHHEDA J N, DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782): 1933-1937.
|
12 |
ZHANG Z H, ZHAO Z K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresource Technology, 2010, 101(3): 1111-1114.
|
13 |
LANSALOT-MATRAS C, DE MOREAU C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids[J]. Catalysis Communications, 2003, 4(10): 517-520.
|
14 |
PINKERT A, MARSH K N, PANG S, et al. Ionic liquids and their interaction with cellulose[J]. Chemical Reviews, 2009, 109(12): 6712-6728.
|
15 |
DE MOREAU C, DURAND R, POURCHERON C, et al. Preparation of 5-hydroxymethylfurfural from fructose and precursors over H-form zeolites[J]. Industrial Crops and Products, 1994, 3(1/2): 85-90.
|
16 |
ROMÁN-LESHKOV Y, DUMESIC J A. Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts[J]. Topics in Catalysis, 2009, 52(3): 297-303.
|
17 |
SONSIAM C, KAEWCHADA A, PUMROD S, et al. Synthesis of 5-hydroxymethylfurfural (5-HMF) from fructose over cation exchange resin in a continuous flow reactor[J]. Chemical Engineering and Processing-Process Intensification, 2019, 138: 65-72.
|
18 |
MURANAKA Y, NAKAGAWA H, MASAKI R, et al. Continuous 5-hydroxymethylfurfural production from monosaccharides in a microreactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 10998-11005.
|
19 |
SHI N, LIU Q Y, ZHANG Q, et al. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green Chemistry, 2013, 15(7): 1967.
|
20 |
RIGAL L, GASET A. Direct preparation of 5-hydroxymethyl-2-furancarboxaldehyde from polyholosides: a chemical valorisation of the Jerusalem artichoke (Helianthus tuberosus L.)[J]. Biomass, 1983, 3(2): 151-163.
|
21 |
LEE R, HARRIS J, CHAMPAGNE P, et al. CO2-Catalysed conversion of carbohydrates to 5-hydroxymethyl furfural[J]. Green Chemistry, 2016, 18(23): 6305-6310.
|
22 |
DE SOUZA R L, YU H, RATABOUL F, et al. 5-Hydroxymethylfurfural (5-HMF) production from hexoses: limits of heterogeneous catalysis in hydrothermal conditions and potential of concentrated aqueous organic acids as reactive solvent system[J]. Challenges, 2012, 3(2): 212-232.
|
23 |
ZHANG X M, MURRIA P, JIANG Y, et al. Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media[J]. Green Chemistry, 2016, 18(19): 5219-5229.
|
24 |
PAGÁN-TORRES Y J, WANG T F, GALLO J M R, et al. Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent[J]. ACS Catalysis, 2012, 2(6): 930-934.
|
25 |
TIAN G, TONG X L, CHENG Y, et al. Tin-catalyzed efficient conversion of carbohydrates for the production of 5-hydroxymethylfurfural in the presence of quaternary ammonium salts[J]. Carbohydrate Research, 2013, 370: 33-37.
|
26 |
WRIGSTEDT P, KESKIVÄLI J, LESKELÄ M, et al. The role of salts and Brønsted acids in lewis acid-catalyzed aqueous-phase glucose dehydration to 5-hydroxymethylfurfural[J]. ChemCatChem, 2015, 7(3): 501-507.
|
27 |
YANG Y, HU C W, ABU-OMAR M M. The effect of hydrochloric acid on the conversion of glucose to 5-hydroxymethylfurfural in AlCl3-H2O/THF biphasic medium[J]. Journal of Molecular Catalysis A: Chemical, 2013, 376: 98-102.
|
28 |
DELGADO MARTIN G, BOUNOUKTA C E, AMMARI F, et al. Fructose dehydration reaction over functionalized nanographitic catalysts in MIBK/H2O biphasic system[J]. Catalysis Today, 2021, 366: 68-76.
|
29 |
JIMÉNEZ-MORALES I, MORENO-RECIO M, SANTAMARÍA-GONZÁLEZ J, et al. Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural[J]. Applied Catalysis B: Environmental, 2014, 154/155: 190-196.
|
30 |
CAO X Q, TEONG S P, WU D, et al. An enzyme mimic ammonium polymer as a single catalyst for glucose dehydration to 5-hydroxymethylfurfural[J]. Green Chemistry, 2015, 17(4): 2348-2352.
|
31 |
GARCÍA-SANCHO C, FÚNEZ-NÚÑEZ I, MORENO-TOST R, et al. Beneficial effects of calcium chloride on glucose dehydration to 5-hydroxymethylfurfural in the presence of alumina as catalyst[J]. Applied Catalysis B: Environmental, 2017, 206: 617-625.
|
32 |
GAO D M, ZHAO B H, LIU H C, et al. Synthesis of a hierarchically porous niobium phosphate monolith by a sol-gel method for fructose dehydration to 5-hydroxymethylfurfural[J]. Catalysis Science & Technology, 2018, 8(14): 3675-3685.
|
33 |
CANDU N, FERGANI M EL, VERZIU M, et al. Efficient glucose dehydration to HMF onto Nb-BEA catalysts[J]. Catalysis Today, 2019, 325: 109-116.
|
34 |
ORDOMSKY V V, SUSHKEVICH V L, SCHOUTEN J C, et al. Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts[J]. Journal of Catalysis, 2013, 300: 37-46.
|
35 |
MORENO-RECIO M, SANTAMARÍA-GONZÁLEZ J, MAIRELES-TORRES P. Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural[J]. Chemical Engineering Journal, 2016, 303: 22-30.
|
36 |
YU I K M, TSANG D C W. Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms[J]. Bioresource Technology, 2017, 238: 716-732.
|
37 |
HE R, HUANG X L, ZHAO P, et al. The synthesis of 5-hydroxymethylfurfural from glucose in biphasic system by phosphotungstic acidified titanium-zirconium dioxide[J]. Waste and Biomass Valorization, 2018, 9(4): 657-668.
|
38 |
TEONG S P, YI G S, ZENG H Q, et al. The effects of emulsion on sugar dehydration to 5-hydroxymethylfurfural in a biphasic system[J]. Green Chemistry, 2015, 17(7): 3751-3755.
|
39 |
LI X C, XIA Q N, NGUYEN V C, et al. High yield production of HMF from carbohydrates over silica-alumina composite catalysts[J]. Catalysis Science & Technology, 2016, 6(20): 7586-7596.
|
40 |
陈慧. 有机溶剂/离子液体沸腾双相体系中5-HMF萃取与合成的研究[D]. 大连: 大连大学, 2017.
|
|
CHEN Hui. Extraction and synthesis of 5-HMF in organic solvent/ionic liquid boiling biphasic system[D]. Dalian: Dalian University, 2017.
|
41 |
ZHOU J X, XIA Z, HUANG T Y, et al. An ionic liquid-organics-water ternary biphasic system enhances the 5-hydroxymethylfurfural yield in catalytic conversion of glucose at high concentrations[J]. Green Chemistry, 2015, 17(8): 4206-4216.
|
42 |
TUERCKE T, PANIC S, LOEBBECKE S. Microreactor process for the optimized synthesis of 5-hydroxymethylfurfural: a promising building block obtained by catalytic dehydration of fructose[J]. Chemical Engineering & Technology, 2009, 32(11): 1815-1822.
|
43 |
SHIMANOUCHI T, KATAOKA Y, TANIFUJI T, et al. Chemical conversion and liquid-liquid extraction of 5-hydroxymethylfurfural from fructose by slug flow microreactor[J]. AIChE Journal, 2016, 62(6): 2135-2143.
|
44 |
SHIMANOUCHI T, KATAOKA Y, YASUKAWA M, et al. Simplified model for extraction of 5-hydroxymethylfurfural from fructose: use of water/oil biphasic system under high temperature and pressure conditions[J]. Solvent Extraction Research and Development, Japan, 2013, 20: 205-212.
|
45 |
LUECKGEN J, VANOYE L, PHILIPPE R, et al. Simple and selective conversion of fructose into HMF using extractive-reaction process in microreactor[J]. Journal of Flow Chemistry, 2018, 8(1): 3-9.
|
46 |
刘冠颖, 方玉诚, 郭辉进, 等. 微反应器发展概况[J]. 当代化工, 2010, 39(3): 315-318.
|
|
LIU Guanying, FANG Yucheng, GUO Huijin, et al. Development of microreactors[J]. Contemporary Chemical Industry, 2010, 39(3): 315-318.
|
47 |
BURNS J R, RAMSHAW C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries[J]. Lab on a Chip, 2001, 1(1): 10.
|
48 |
NIKOLLA E, ROMÁN-LESHKOV Y, MOLINER M, et al. “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite[J]. ACS Catalysis, 2011, 1(4): 408-410.
|
49 |
GUO W Z, HEERES H J, YUE J. Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor[J]. Chemical Engineering Journal, 2020, 381: 122754.
|
50 |
CRISCI A J, TUCKER M H, DUMESIC J A, et al. Bifunctional solid catalysts for the selective conversion of fructose to 5-hydroxymethylfurfural[J]. Topics in Catalysis, 2010, 53(15/16/17/18): 1185-1192.
|
51 |
SHI C Y, XIN J Y, LIU X M, et al. Using sub/supercritical CO2 as “phase separation switch” for the efficient production of 5-hydroxymethylfurfural from fructose in an ionic liquid/organic biphasic system[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(2): 557-563.
|
52 |
PIAO S H, KWON S H, ZHANG W L, et al. Celebrating soft matter’s 10th anniversary: stimuli-responsive Pickering emulsion polymerized smart fluids[J]. Soft Matter, 2015, 11(4): 646-654.
|
53 |
CROSSLEY S, FARIA J, SHEN M, et al. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface[J]. Science, 2010, 327(5961): 68-72.
|
54 |
FARIA J, PILAR RUIZ M, RESASCO D E. Carbon nanotube/zeolite hybrid catalysts for glucose conversion in water/oil emulsions[J]. ACS Catalysis, 2015, 5(8): 4761-4771.
|
55 |
PIAO S H, GAO C Y, CHOI H J. Pickering emulsion-polymerized conducting polymer nanocomposites and their applications[J]. Chemical Papers, 2017, 71(2): 179-188.
|