化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3444-3454.DOI: 10.16085/j.issn.1000-6613.2020-1438
韩婉玲1,2,3(), 钱勇兴2,3,4, 张会宁2,3,4(), 陈吉炜5, 马建青2,3,4, 张科锋2,3,4
收稿日期:
2020-07-24
修回日期:
2020-12-18
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
张会宁
作者简介:
韩婉玲(1995—),女,硕士研究生,研究方向为水污染控制。E-mail:基金资助:
HAN Wanling1,2,3(), QIAN Yongxing2,3,4, ZHANG Huining2,3,4(), CHEN Jiwei5, MA Jianqing2,3,4, ZHANG Kefeng2,3,4
Received:
2020-07-24
Revised:
2020-12-18
Online:
2021-06-06
Published:
2021-06-22
Contact:
ZHANG Huining
摘要:
短链氯化石蜡(SCCPs)是2017年新定义的持久性有机污染物(POPs),能对人体健康及生态环境造成重大危害。现阶段国内外关于SCCPs的研究工作主要集中在环境中SCCPs的分析检测方法和浓度水平分布规律,对SCCPs的高效去除方法及去除机理的研究较少。本文主要综述了现阶段SCCPs的有效去除方法,包括物化法(一般物化法和高级氧化处理)和生物法(细菌降解和植物吸收法),对比分析了这些方法的优缺点,讨论了不同方法去除SCCPs的影响因素、可能降解机理及途径,并通过类比借鉴,提出了其他具有可行性的去除SCCPs的方法。总体而言,虽然物化法去除效率高,但是成本高且操作条件苛刻,微生物法因经济环保而具有更大的发展潜力,但若将微生物法与物化法联用,则有可能发展成为最佳去除工艺。最后展望了环境中SCCPs去除方法的研究重点。
中图分类号:
韩婉玲, 钱勇兴, 张会宁, 陈吉炜, 马建青, 张科锋. 环境中短链氯化石蜡去除方法的研究进展[J]. 化工进展, 2021, 40(6): 3444-3454.
HAN Wanling, QIAN Yongxing, ZHANG Huining, CHEN Jiwei, MA Jianqing, ZHANG Kefeng. Review on removal methods of short-chain chlorinated paraffins in environment[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3444-3454.
污染物种类 | 吸附质 | 吸附剂 | 吸附剂 用量 | 吸附平衡 时间 | 去除效果 | 吸附动力学 | 吸附机理 |
---|---|---|---|---|---|---|---|
抗生素 | 四环素[ | 硝化颗粒污泥 | 30mg·L-1 | 4h | 7.30mg·(gSS)-1 (悬浮固形物) | 拟二级动力学 | 表面吸附和颗粒内扩散 |
磺胺甲唑[ | 活性污泥 | 2.56g·L-1 | 1h | 92.1% | 零级动力学 | — | |
多溴二苯醚 | 十溴二苯醚[ | 好氧颗粒污泥 | 8g SS·L-1 | 12h | >95.0% | 修正的拟一级动力学 | 化学吸附 |
药品及个人 护理用品 | 甲胺呋硫[ | 混合的驯化异养菌 | — | 5h | 96% | — | 静电相互作用 |
扑热息痛和水杨酸[ | 活性污泥 | — | 24h | — | 二级动力学 | 表面吸附 |
表1 其他POPs的细菌吸附去除性能
污染物种类 | 吸附质 | 吸附剂 | 吸附剂 用量 | 吸附平衡 时间 | 去除效果 | 吸附动力学 | 吸附机理 |
---|---|---|---|---|---|---|---|
抗生素 | 四环素[ | 硝化颗粒污泥 | 30mg·L-1 | 4h | 7.30mg·(gSS)-1 (悬浮固形物) | 拟二级动力学 | 表面吸附和颗粒内扩散 |
磺胺甲唑[ | 活性污泥 | 2.56g·L-1 | 1h | 92.1% | 零级动力学 | — | |
多溴二苯醚 | 十溴二苯醚[ | 好氧颗粒污泥 | 8g SS·L-1 | 12h | >95.0% | 修正的拟一级动力学 | 化学吸附 |
药品及个人 护理用品 | 甲胺呋硫[ | 混合的驯化异养菌 | — | 5h | 96% | — | 静电相互作用 |
扑热息痛和水杨酸[ | 活性污泥 | — | 24h | — | 二级动力学 | 表面吸附 |
技术方法 | 影响因素 | 优点 | 缺点 | 反应途径/机制 | 反应产物 |
---|---|---|---|---|---|
一般物化去除法[ | SCCPs和催化剂投加量以及浓度、pH、温度、碳链长度和氯化度 | 工艺简单、去除污染物速率较快 | 污染处理费用较大、不适合大规模应用 | 还原脱氯 | 正构烷烃和正构烯烃、醇类或长链中间体 |
高级氧化法[ | 光照强度、SCCPs和催 化剂投加量以及浓度、pH、温度 | 耗时短、效率高、重现性好、容易处理、便于工程化应用 | 成本高、光催化剂较难再生、加工条件复杂、易生成有机副产物 | 光催化降解 | 烯烃和羰基化合物的中间体、H2O、CO2和HCl |
细菌降解法[ | 碳链长度和氯化度、pH、温度 | 经济成本低、操作简单、无二次污染 | 细菌降解周期较长 | 生物转化和脱氯降解 | 低氯同类物或正构烷烃 |
植物吸收法[ | 碳链长度和氯化度、pH、温度 | 成本低、环保 | 植物培养较慢、不适合大规模应用 | 脱卤和羟基化、在植物组织中脱氯和氯重排 | 低氯同类物C10H17Cl5、C10H16Cl6和其他C10H15Cl7 |
动物去除法[ | 碳链长度和氯化度、pH、温度 | 操作简单、成本低 | 受环境影响大、不好调控 | 氧化脱卤作用 | 脂肪酸 |
表2 SCCPs(包括氯代烷烃)去除方法的对比
技术方法 | 影响因素 | 优点 | 缺点 | 反应途径/机制 | 反应产物 |
---|---|---|---|---|---|
一般物化去除法[ | SCCPs和催化剂投加量以及浓度、pH、温度、碳链长度和氯化度 | 工艺简单、去除污染物速率较快 | 污染处理费用较大、不适合大规模应用 | 还原脱氯 | 正构烷烃和正构烯烃、醇类或长链中间体 |
高级氧化法[ | 光照强度、SCCPs和催 化剂投加量以及浓度、pH、温度 | 耗时短、效率高、重现性好、容易处理、便于工程化应用 | 成本高、光催化剂较难再生、加工条件复杂、易生成有机副产物 | 光催化降解 | 烯烃和羰基化合物的中间体、H2O、CO2和HCl |
细菌降解法[ | 碳链长度和氯化度、pH、温度 | 经济成本低、操作简单、无二次污染 | 细菌降解周期较长 | 生物转化和脱氯降解 | 低氯同类物或正构烷烃 |
植物吸收法[ | 碳链长度和氯化度、pH、温度 | 成本低、环保 | 植物培养较慢、不适合大规模应用 | 脱卤和羟基化、在植物组织中脱氯和氯重排 | 低氯同类物C10H17Cl5、C10H16Cl6和其他C10H15Cl7 |
动物去除法[ | 碳链长度和氯化度、pH、温度 | 操作简单、成本低 | 受环境影响大、不好调控 | 氧化脱卤作用 | 脂肪酸 |
1 | FIEDLER H. Short-chain chlorinated paraffins: production, use and international regulations[M]. BOER J, Heidelberg: Springer Berlin Heidelberg, 2010: 1-40. |
2 | MOURIK L M VAN, GAUS C, LEONARDS P E G, et al. Chlorinated paraffins in the environment: a review on their production, fate, levels and trends between 2010 and 2015[J]. Chemosphere, 2016, 155: 415-428. |
3 | GLÜGE J, WANG Z Y, BOGDAL C, et al. Global production, use, and emission volumes of short-chain chlorinated paraffins–A minimum scenario[J]. Science of the Total Environment, 2016, 573: 1132-1146. |
4 | 吴红忠. 新形势下氯化石蜡生产的发展方向[J]. 氯碱工业, 2019, 55(10): 23-26. |
WU Hongzhong. The development direction of chlorinated paraffin production under the new situations[J]. Chlor-Alkali Industry, 2019, 55(10): 23-26. | |
5 | WU J, CAO D, GAO W, et al. The atmospheric transport and pattern of medium chain chlorinated paraffins at Shergyla Mountain on the Tibetan Plateau of China[J]. Environmental Pollution, 2019, 245: 46-52. |
6 | JIANG W, CHEN H, HUANG T, et al. Tagged sources of short-chain chlorinated paraffins in China’s marine environment and fish[J]. Chemosphere, 2019, 229: 358-365. |
7 | WANG K R, GAO L R, ZHU S, et al. Spatial distributions and homolog profiles of chlorinated nonane paraffins, and short and medium chain chlorinated paraffins in soils from Yunnan, China[J]. Chemosphere, 2020, 247: 125855. |
8 | XU C, ZHANG Q, GAO L, et al. Spatial distributions and transport implications of short- and medium-chain chlorinated paraffins in soils and sediments from an e-waste dismantling area in China[J]. Science of the Total Environment, 2019, 649: 821-828. |
9 | SUN R X, CHEN J M, SHAO H Y, et al. Bioaccumulation of short-chain chlorinated paraffins in chicken (Gallus domesticus): comparison to fish[J]. Journal of Hazardous Materials, 2020, 396: 122590. |
10 | JIANG W, HUANG T, MAO X X, et al. Gridded emission inventory of short-chain chlorinated paraffins and its validation in China[J]. Environmental Pollution, 2017, 220: 132-141. |
11 | 赵晗, 周辰, 周航, 等. “毒跑道”恐慌[N]. 财新周刊, 2016-06-27(25). |
ZHAO Han, ZHOU Chen, ZHOU Hang, et al. "Poisonous runway" panic[N]. Caixin Weekly, 2016-06-27(25). | |
12 | 张勇. 台湾食品塑化剂风波蔓延[N]. 洛阳日报, 2016-05-30(7). |
ZHANG Yong. Food plasticizer storm spreading in Taiwan[N]. Luoyang Daily, 2016-05-30(7). | |
13 | 李耳. 致命危机:酒鬼酒塑化剂超标260%[EB/OL]. 2012-11-19. . |
LI Er. Fatal crisis: alcoholic drinks with 260% excess plasticizer[EB/OL]. 2012-11-19. . | |
14 | XIN S Z, GAO W, WANG Y W, et al. Thermochemical emission and transformation of chlorinated paraffins in inert and oxidizing atmospheres[J]. Chemosphere, 2017, 185: 899-906. |
15 | 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9): 919-929. |
WANG Yawei, WANG Ying, JIANG Guibin. Analytical methods, environmental pollutions and toxicity of short chain chlorinated paraffins[J]. Progress in Chemistry, 2017, 29(9): 919-929. | |
16 | JIANG W, HUANG T, CHEN H, et al. Contamination of short-chain chlorinated paraffins to the biotic and abiotic environments in the Bohai Sea[J]. Environmental Pollution, 2018, 233: 114-124. |
17 | LABADIE P, BLASI C, LE MENACH K, et al. Evidence for the widespread occurrence of short- and medium-chain chlorinated paraffins in fish collected from the Rhône River basin (France)[J]. Chemosphere, 2019, 223: 232-239. |
18 | QIAO L, GAO L R, XIA D, et al. Short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yangtze River: spatial distributions, source apportionment and risk assessment[J]. Science of the Total Environment, 2017, 575: 1177-1182. |
19 | MUIR D. Environmental levels and fate[M]. Heidelberg: Springer Berlin Heidelberg, 2010: 107-133. |
20 | TOMY G T, MUIR D C G, STERN G A, et al. Levels of C10-C13 polychloro-n-alkanes in marine mammals from the Arctic and the St. Lawrence River Estuary[J]. Environmental Science & Technology, 2000, 34(9): 1615-1619. |
21 | STRID A, BRUHN C, SVERKO E, et al. Brominated and chlorinated flame retardants in liver of Greenland shark (Somniosus microcephalus)[J]. Chemosphere, 2013, 91(2): 222-228. |
22 | RETH M, CIRIC A, CHRISTENSEN G N, et al. Short-and medium-chain chlorinated paraffins in biota from the European Arctic-differences in homologue group patterns[J]. Science of the Total Environment, 2006, 367(1): 252-260. |
23 | VORKAMP K, RIGÉT F F. A review of new and current-use contaminants in the Arctic environment: evidence of long-range transport and indications of bioaccumulation[J]. Chemosphere, 2014, 111: 379-395. |
24 | CASÀ M V, MOURIK L M VAN, WEIJS L, et al. First detection of short-chain chlorinated paraffins (SCCPs) in humpback whales (megaptera novaeangliae) foraging in Antarctic waters[J]. Environmental Pollution, 2019, 250: 953-959. |
25 | MA X D, ZHANG H J, ZHOU H Q, et al. Occurrence and gas/particle partitioning of short- and medium-chain chlorinated paraffins in the atmosphere of Fildes Peninsula of Antarctica[J]. Atmospheric Environment, 2014, 90: 10-15. |
26 | HUANG Y M, CHEN L G, JIANG G, et al. Bioaccumulation and biomagnification of short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary, South China[J]. Science of the Total Environment, 2019, 671: 262-269. |
27 | LI Y L, HOU X W, YU M, et al. Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated by the whole pumpkin seedlings[J]. Environmental Pollution, 2017, 224: 524-531. |
28 | WANG R H, GAO L R, ZHENG M H, et al. Characterization of short- and medium-chain chlorinated paraffins in cereals and legumes from 19 Chinese provinces[J]. Chemosphere, 2019, 226: 282-289. |
29 | DONG S J, LI X M, SU X O, et al. Concentrations and congener group profiles of short- and medium-chain chlorinated paraffins in animal feed materials[J]. Science of the Total Environment, 2019, 647: 676-681. |
30 | LI H J, GAO S, YANG M L, et al. Dietary exposure and risk assessment of short-chain chlorinated paraffins in supermarket fresh products in Jinan, China[J]. Chemosphere, 2020, 244: 125393 |
31 | WANG R H, GAO L R, ZHENG M H, et al. Short- and medium-chain chlorinated paraffins in aquatic foods from 18 Chinese provinces: occurrence, spatial distributions, and risk assessment[J]. Science of the Total Environment, 2018, 615: 1199-1206. |
32 | XIA D, GAO L, ZHENG M, et al. Human exposure to short-and medium-chain chlorinated paraffins via mothers’ milk in Chinese urban population[J]. Environmental Science & Technology, 2017, 51(1): 608-615. |
33 | LI T, WAN Y, GAO S, et al. High-throughput determination and characterization of short-, medium-, and long-chain chlorinated paraffins in human blood[J]. Environmental Science & Technology, 2017, 51(6): 3346-3354. |
34 | XU J Z, GUO W J, WEI L H, et al. Validation of a HRGC-ECNI/LRMS method to monitor short-chain chlorinated paraffins in human plasma[J]. Journal of Environmental Sciences, 2019, 75: 289-295. |
35 | FEO M L, ELJARRAT E, BARCELÓ D, et al. Occurrence, fate and analysis of polychlorinated n-alkanes in the environment[J]. TrAC Trends in Analytical Chemistry, 2009, 28(6): 778-791. |
36 | GENG N, ZHANG H, ZHANG B, et al. Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human hepatoma HepG2 cells[J]. Environmental Science & Technology, 2015, 49(5): 3076-3083. |
37 | REN X Q, GENG N B, ZHANG H J, et al. Comparing the disrupting effects of short-, medium- and long-chain chlorinated paraffins on cell viability and metabolism[J]. Science of the Total Environment, 2019, 685: 297-307. |
38 | 朱志保, 周琴, 赵远. 短链氯化石蜡的研究进展[J]. 化工进展, 2015, 34(8): 3165-3172, 3187. |
ZHU Zhibao, ZHOU Qin, ZHAO Yuan. Research progress of short chain chlorinated paraffins[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3165-3172, 3187. | |
39 | DING Q Y, DING N, CHEN X F, et al. Chlorinated paraffins wrapping of carbon nanotubes: a theoretical investigation[J]. Applied Surface Science, 2018, 436: 277-282. |
40 | LIU H J, YU Y S, SHAO Q, et al. Porous polymeric resin for adsorbing low concentration of VOCs: unveiling adsorption mechanism and effect of VOCs’ molecular properties[J]. Separation and Purification Technology, 2019, 228: 115755. |
41 | PARK Y, AYOKO G A, FROST R L. Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media[J]. Journal of Colloid and Interface Science, 2011, 354(1): 292-305. |
42 | LAHANIATIS M R, COELHAN M, PARLAR H. Clean-up and quantification of short and medium chain polychlorinated n-alkanes in fish, fish oil and fish feed[J]. Organohalogen Compounds, 2000, 47: 276-279. |
43 | ZHANG Z Y, LU M, ZHANG Z Z, et al. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 243: 105-111. |
44 | ZHANG W L, GAO Y P, QIN Y X, et al. Photochemical degradation kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: a case of 1-chlorodecane[J]. Environmental Pollution, 2019, 247: 362-370. |
45 | BARIKI R, MAJHI D, DAS K, et al. Facile synthesis and photocatalytic efficacy of UiO-66/CdIn2S4 nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H2 evolution[J]. Applied Catalysis B: Environmental, 2020, 270:118882. |
46 | SUN F, QI H N, XIE Y R, et al. Flexible self-supporting bifunctional [TiO2/C]//[Bi2WO6/C] carbon-based Janus nanofiber heterojunction photocatalysts for efficient hydrogen evolution and degradation of organic pollutant[J]. Journal of Alloys and Compounds, 2020, 830: 154673. |
47 | ZHANG G H, ZHANG X Q, MENG Y, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review[J]. Chemical Engineering Journal, 2020, 392: 123684. |
48 | KOH I O, THIEMANN W. Study of photochemical oxidation of standard chlorinated paraffins and identification of degradation products[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 139(2/3): 205-215. |
49 | EL-MORSI T M, BUDAKOWSKI W R, ABD-EL-AZIZ A S, et al. Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO2: a reaction of adsorbed chlorinated alkane with surface hydroxyl radicals[J]. Environmental Science & Technology, 2000, 34(6): 1018-1022. |
50 | EL-MORSI T M, EMARA M M, BARY H M H ABD EL, et al. Homogeneous degradation of 1,2,9,10-tetrachlorodecane in aqueous solutions using hydrogen peroxide, iron and UV light[J]. Chemosphere, 2002, 47(3): 343-348. |
51 | FRIESEN K J, EL-MORSI T M, ABD-EL-AZIZ A S. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction[J]. International Journal of Photoenergy, 2004, 6(2): 81-88. |
52 | CHEN X, ZHAO Q D, LI X Y, et al. Enhanced photocatalytic activity of degrading short chain chlorinated paraffins over reduced graphene oxide/CoFe2O4/Ag nanocomposite[J]. Journal of Colloid and Interface Science, 2016, 479: 89-97. |
53 | XIONG W, LI X Y, ZHAO Q D, et al. Insight into the photocatalytic mineralization of short chain chlorinated paraffins boosted by polydopamine and Ag nanoparticles[J]. Journal of Hazardous Materials, 2018, 359: 186-193. |
54 | WANG G H, FAN Z, WU D X, et al. Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate[J]. Desalination, 2014, 349: 136-144. |
55 | ZHANG L J, WANG X, JIAO Y Y, et al. Biodegradation of 4-chloronitrobenzene by biochemical cooperation between Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 isolated from activated sludge[J]. Chemosphere, 2013, 91(9): 1243-1249. |
56 | MADELEY J R, BIRTLEY R D N. Chlorinated paraffins and the environment. 2. Aquatic and avian toxicology[J]. Environmental Science & Technology, 1980, 14(10): 1215-1221. |
57 | OMORI T, KIMURA T, KODAMA T. Bacterial cometabolic degradation of chlorinated paraffins[J]. Applied Microbiology and Biotechnology, 1987, 25(6): 553-557. |
58 | ALLPRESS J D, GOWLAND P C. Biodegradation of chlorinated paraffins and long-chain chloroalkanes by Rhodococcus sp. S45-1[J]. International Biodeterioration & Biodegradation, 1999, 43(4): 173-179. |
59 | HEATH E, BROWN W A, JENSEN S R, et al. Biodegradation of chlorinated alkanes and their commercial mixtures by Pseudomonas sp. strain 273[J]. Journal of Industrial Microbiology and Biotechnology, 2006, 33(3): 197-207. |
60 | LU M. Degradation of short chain polychlorinated paraffins by a new isolate: tests in pure culture and sewage sludge[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7): 1273-1279. |
61 | LIU Y C, LI L Z, WU Y, et al. Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene[J]. Bioresource Technology, 2010, 101(1): 310-316. |
62 | SINGH C, LIN J. Isolation and characterization of diesel oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa[J]. African Journal of Biotechnology, 2008, 7(12): 1927-1932. |
63 | ACER Ö, GÜVEN K, BEKLER F M, et al. Isolation and characterization of long-chain alkane-degrading Acinetobacter sp. BT1A from oil-contaminated soil in Diyarbakır, in the Southeast of Turkey[J]. Bioremediation Journal, 2016, 20(1): 80-87. |
64 | THRONE-HOLST M, WENTZEL A, ELLINGSEN T E, et al. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874[J]. Applied and Environmental Microbiology, 2007, 73(10): 3327-3332. |
65 | DE PASQUALE C, PALAZZOLO E, PICCOLO L L, et al. Degradation of long-chain n-alkanes in soil microcosms by two actinobacteria[J]. Journal of Environmental Science and Health A, 2012, 47(3): 374-381. |
66 | BEILEN J B VAN, FUNHOFF E G, LOON A VAN, et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases[J]. Applied and Environmental Microbiology, 2006, 72(1): 59-65. |
67 | ANG T F, MAIANGWA J, SALLEH A B, et al. Dehalogenases: from improved performance to potential microbial dehalogenation applications[J]. Molecules, 2018, 23(5): 1100. |
68 | SALLIS P J, ARMFIELD S J, BULL A T, et al. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2[J]. Journal of General Microbiology, 1990, 136(1): 115-120. |
69 | LI A, SHAO Z. Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5[J]. PLoS One, 2014, 9(2): e89144. |
70 | HEEB N V, SCHALLES S, LEHNER S, et al. Biotransformation of short-chain chlorinated paraffins (SCCPs) with LinA2: a HCH and HBCD converting bacterial dehydrohalogenase[J]. Chemosphere, 2019, 226: 744-754. |
71 | LAL R, PANDEY G, SHARMA P, et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation[J]. Microbiology and Molecular Biology Reviews, 2010, 74(1): 58-80. |
72 | SHI Y J, WANG X H, QI Z, et al. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules[J]. Journal of Hazardous Materials, 2011, 191(1/2/3): 103-109. |
73 | YANG S F, LIN C F, WU C J, et al. Fate of sulfonamide antibiotics in contact with activated sludge—Sorption and biodegradation[J]. Water Research, 2012, 46(4): 1301-1308. |
74 | NI S Q, CUI Q, ZHENG Z. Interaction of polybrominated diphenyl ethers and aerobic granular sludge: biosorption and microbial degradation[J]. BioMed Research International, 2014, 2014: 274620. |
75 | VASILIADOU I A, MOLINA R, MARTÍNEZ F, et al. Biological removal of pharmaceutical and personal care products by a mixed microbial culture: sorption, desorption and biodegradation[J]. Biochemical Engineering Journal, 2013, 81: 108-119. |
76 | FOOLAD M, HU J, TRAN N H, et al. Sorption and biodegradation characteristics of the selected pharmaceuticals and personal care products onto tropical soil[J]. Water Science and Technology, 2016, 73(1): 51-59. |
77 | 白皓, 高媛, 朱秀华, 等. 环境空气中短链氯化石蜡研究进展[J]. 生态毒理学报, 2016, 11(2): 80-88. |
BAI Hao, GAO Yuan, ZHU Xiuhua, et al. Research progress of short chain chlorinated paraffins in environmental air[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 80-88. | |
78 | COLLINS C, FRYER M, GROSSO A. Plant uptake of non-ionic organic chemicals[J]. Environmental Science & Technology, 2006, 40(1): 45-52. |
79 | LI Y L, HOU X W, CHEN W F, et al. Carbon chain decomposition of short chain chlorinated paraffins mediated by pumpkin and soybean seedlings[J]. Environmental Science & Technology, 2019, 53(12): 6765-6772. |
80 | LI Y L, CHEN W F, KONG W Q, et al. Transformation of 1,1,1,3,8,10,10,10-octachlorodecane in air phase increased by phytogenic volatile organic compounds of pumpkin seedlings[J]. Science of the Total Environment, 2020, 704: 135455. |
81 | MURPHY G L, PERRY J J. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi[J]. Journal of Bacteriology, 1984, 160(3): 1171-1174. |
82 | 阮久莉, 王勐, 毛亮, 等. 白腐菌锰过氧化物酶对2,2',4,4'-四溴联苯醚的降解[J]. 环境科学与技术, 2012, 35(1): 20-24. |
RUAN Jiuli, WANG Meng, MAO Liang, et al. Degradation of PBDEs by manganese peroxidase of white rot fungi Phanerochaete chrysosporium[J]. Environmental Science & Technology, 2012, 35(1): 20-24. | |
83 | ZHANG C, LU J, WU J, et al. Removal of phenanthrene from coastal waters by green tide algae Ulva prolifera[J]. Science of the Total Environment, 2017, 609: 1322-1328. |
84 | ZHANG C, LU J, WU J. Adsorptive removal of polycyclic aromatic hydrocarbons by detritus of green tide algae deposited in coastal sediment[J]. Science of the Total Environment, 2019, 670: 320-327. |
85 | KASKA D D, YOKOTA T, WEBB H M, et al. Long-chain chloroalkane utilization by a marine protozoan[J]. Journal of General Microbiology, 1991, 137(11): 2669-2672. |
86 | KASKA D D, POLNE-FULLER M, GIBOR A. Biotransformation of alkanes and haloalkanes by a marine amoeba[J]. Applied Microbiology and Biotechnology, 1991, 34(6): 814-817. |
[1] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[2] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[3] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[4] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[5] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[6] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[7] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[8] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[9] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[10] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[11] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[12] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[13] | 杨红梅, 高涛, 鱼涛, 屈撑囤, 高家朋. 高铁酸盐处理难降解有机物磺化酚醛树脂[J]. 化工进展, 2023, 42(6): 3302-3308. |
[14] | 刘宇龙, 姚俊虎, 舒闯闯, 佘跃惠. 磁性Fe3O4纳米颗粒的生物合成及其在提高采收率中的应用[J]. 化工进展, 2023, 42(5): 2464-2474. |
[15] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |