化工进展 ›› 2021, Vol. 40 ›› Issue (1): 346-353.DOI: 10.16085/j.issn.1000-6613.2020-0549
收稿日期:
2020-04-09
出版日期:
2021-01-05
发布日期:
2021-01-12
作者简介:
王晓晨(1990—),女,硕士,研究方向为新型多孔材料。E-mail:Received:
2020-04-09
Online:
2021-01-05
Published:
2021-01-12
摘要:
金属有机骨架(metal-organic frameworks,MOFs)是多孔材料领域的研究热点之一。MOFs具有高比表面积和孔道均一等特点,但微孔MOFs在大分子应用领域受到限制。本文介绍了延长配体法、模板剂法和聚合物法等多种制备多级孔MOFs的方法,合成后的多级孔MOFs兼具微孔、介孔和大孔,能够参与大分子反应,同时具有水热稳定性和化学稳定性,在催化、气体吸附分离、储能材料等诸多领域表现出优异性能。本文重点介绍了多级孔MOFs在生物医药领域的研究进展,结果表明多级孔MOFs是一种孔道可调节、可在特定条件下分解的生物相容性材料,用于固定化酶和负载医药分子均表现出良好性能。最后讨论了多级孔MOFs材料制备和应用目前存在的问题与挑战,展望了多级孔MOFs材料作为一类新型功能化多孔材料的应用前景。
中图分类号:
王晓晨. 多级孔金属有机骨架材料的合成及其在生物医药中的应用研究进展[J]. 化工进展, 2021, 40(1): 346-353.
Xiaochen WANG. Progress on the synthesis of hierarchical metal organic frameworks and its biomedical application[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 346-353.
1 | YAGHI O M, LI Hailian. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
2 | WANG Tao, ZHAO Yanchao, ZHANG Limin, et al. Novel approach to hydroxy-group-containing porous organic polymers from bisphenol A[J]. Beilstein Journal of Organic Chemistry, 2017, 13: 2131-2137. |
3 | SONG Xiaxia, ZHANG Sheng, ZHAO Guowei, et al. Ag(Ⅰ)-based high-energy metal organic frameworks (HE-MOFs) incorporating coordinated moieties in channels: synthesis, structure and physicochemical properties[J]. RSC Advances, 2016, 6 (96): 93231-93237. |
4 | YAGHI O M. Reticular chemistry-construction, properties, and precision reactions of framework[J]. Journal of the American Chemical Society, 2016, 138(48): 15507-15509. |
5 | CHEN Zhijie, SYLVIA L H, REDFERN L R, et al. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs[J]. Coordination Chemistry Reviews, 2019, 386: 32-49. |
6 | LIANG Rongran, ZHAO Xin. Heteropore covalent organic frameworks: a new class of porous organic polymers with well-ordered hierarchical porosities[J]. Organic Chemistry Frontiers, 2018, 5(22): 3341-3356. |
7 | BRACCO S, PIGA D, BASSANETTI I, et al. Porous 3D polymers for high pressure methane storage and carbon dioxide capture[J]. Journal of Materials Chemistry A, 2017, 5(21): 10328-10337. |
8 | HINDOCHA S, POULSTON S. Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters[J]. Faraday Discussions, 2017, 201: 113-125. |
9 | JIANG Juncong, FURUKAWA H, ZHANG Yuebiao, et al. High methane storage working capacity in metal-organic frameworks with acrylate links[J]. Journal of the American Chemical Society, 2016, 138(32): 10244-10251. |
10 | THACH N T, HUONG T D, NHUANG T T. Tailoring the pore size and shape of the one-dimensional channels in iron-based MOFs for enhancing the methane storage capacity[J]. Inorganic Chemistry Frontiers, 2019, 6(9): 2441-2447. |
11 | WANG Xun, NIU Zheng, ABDULLAH M, et al. Pore environment engineering in metal-organic frameworks for efficient ethane/ethylene separation[J]. Journal of Materials Chemistry A, 2019, 7(22): 13585-13590. |
12 | JIA Xiwen, DIXON J L, ZELLER M, et al. Templated vanadium tellurites: identifying the effects of low density attractions on inorganic layer topology[J]. Journal of Solid State Chemistry, 2019, 273: 158-165. |
13 | WU Xuanjun, PENG Liang, XIANG Sichen, et al. Computational design of tetrazolate-based metal-organic frameworks for CH4 storage[J]. Physical Chemistry Chemical Physics, 2018, 20(48): 30150-30158. |
14 | ARBULU R C, JIANG Yingbing, et al. Metal-organic framework (MOF) nanorods, nanotubes, and nanowires[J]. Angewandte Chemie International Edition, 2018, 130(20): 5915-5919. |
15 | LI Hao, WANG Kecheng, SUN Yujia, et al. Recent advances in gas storage and separation using metal-organic frameworks[J]. Materials Today, 2018, 21(2): 108-121. |
16 | CALVIN J J, MEGAN A, et al. Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(EtIm)2[J]. The Journal of Chemical Thermodynamics, 2018, 116: 341-351. |
17 | EBRAHIMI A K, SHEIKHSHOAIE I, MEHRAN M. Facile synthesis of a new metal-organic framework of copper(Ⅱ) by interface reaction method, characterization, and its application for removal of malachite green[J]. Journal of Molecular Liquids, 2017, 240: 803-809. |
18 | MOCANU T, TUDOR V, ANDRUH M. Alkoxido-bridged binuclear copper(Ⅱ) complexes derived from aminoalcohols-useful building blocks in designing coordination polymers with a rich structural variety [J]. CrystEngComm, 2017, 19(26): 3538-3552. |
19 | SONG Yoodae, Damsol CHO, Minyoung Yoon, et al. Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal-organic framework for enzymatic glucose sensor [J]. RSC Advances, 2017, 7(17): 10592-10600. |
20 | LIU Chunsen, CHEN Min, TIAN Jiayue, et al. Metal-organic framework supported on processable polymeri matrix by in situ copolymerization for enhanced iron(Ⅲ) detection[J]. Chemistry: A European Journal, 2017, 23(16): 3885-3890. |
21 | LIU Yangyang, MOON Su Young, HUPP J T, et al. Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants[J]. ACS Nano, 2015, 9(12): 12358-12364. |
22 | FÉREY G, SERRE C, MELLOT-DRAZNIEKS C, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie: International Edition, 2004, 43(46): 6296-6301. |
23 | GRÜNKER R, BON V, MULLER P, et al. A new metal-organic framework with ultra-high surface area[J]. Chemical Communication, 2014, 50(26): 3450. |
24 | ZHU He, YANG Xuan, CRANSTON E D, et al. Flexible and porous nanocellulose aerogels with high loading of metal-organic-framework particles for separations applications[J]. Advanced Materials, 2016, 28(35): 7652-7657. |
25 | MANUEL S S, NEGASH G, KENYA D, et al. Synthesis of metal-organic frameworks in water at room temperature: salts as linker sources[J]. Green Chemistry, 2015, 17(3): 1500-1509. |
26 | WEE L H, MELEDINA M, TURNER S, et al. 1D-2D-3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation[J]. Journal of the American Chemical Society, 2017, 139(2): 819-828. |
27 | ZHU Qilong, XU Qiang. Metal-organic framework composites[J]. Chemical Society Review, 2014, 43(16): 5468-5512. |
28 | XU You, CHAI Xingjie, REN Tianlun, et al. Ir-doped Ni-based metal-organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation[J]. Chemical Communications, 2020, 56(16): 2151-2154. |
29 | XUE Zhongbo, ZHU Mengyao, DONG Yuze, et al. An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy[J]. Nanoscale, 2019, 24(11): 11709-11718. |
30 | QI Zewan, CHEN Yang. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity[J]. Biosensors Bioelectronics, 2016, 87: 236-241. |
31 | ORELLANA-TAVRA C, BAXTER E F, TIAN Tian, et al. Amorphous metal-organic frameworks for drug delivery[J]. Chemical Communication, 2015, 51(73): 13878-13881. |
32 | ZHENG Haoquan, ZHANG Yuning, LIU Leifeng, et al. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery[J]. Journal of the American Chemical Society, 2015, 138(3): 962. |
33 | FENG Liang, WANG Kunyu, WILLMAN J, et al. Hierarchy in metal-organic frameworks[J]. ACS Central Science, 2020, 6(3): 359-367. |
34 | XIAO Yuqing, CHU Yueying, LI Shenhui, et al. Primary adsorption sites of light alkanes in multivariate UiO-66 at room temperature as revealed by solid-state NMR[J]. The Journal of Physical Chemistry C, 2020, 124(6): 3738-3746. |
35 | YANG Pei, ZHANG Zongwen, ZOU Guodong, et al. Template thermolysis to create a carbon dots-embedded mesoporous titanium-oxo sulfate framework for visible-light photocatalytic applications[J]. Inorganic Chemistry, 2020, 59(3): 2062-2069. |
36 | LIU Long, QIAO Zhiwei, CUI Xinfang, et al. Amino acid imprinted UiO-66s for highly recognized adsorption of small angiotensin-converting-enzyme-inhibitory peptides[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23039-23049. |
37 | FENG Liang, WANG Kunyu, GREGORY S D, et al. The chemistry of multi-component and hierarchical framework compounds[J]. Chemical Society Reviews, 2019, 48(18): 4823-4853. |
38 | FENG Dawei, GU Zhiyuan, LI Jianrong, et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J]. Angewandte Chemie: International Edition, 2012, 51(41): 10307-10310. |
39 | XU Haiqun, HU Jiahua, WANG Dengke, et al. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states[J]. Journal of the American Chemical Society, 2015, 137(42): 13440-13443. |
40 | ZHANG Guangyao, ZHUANG Yuhong, SHAN Dan, et al. A zirconium based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoproten detection[J]. Analytical Chemistry, 2016, 88(22): 11207-11212. |
41 | FENG Liang, YUAN Shuai, ZHANG Liangliang, et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(6): 2363-2372. |
42 | MO Zongwen, ZHOU Haolong, ZHOU Dongdong, et al. Mesoporous metal-organic framworks with exceptionally high working capacities for adsorption heat transfoamation[J]. Advanced Materials, 2017, 30(4): 1704350. |
43 | LIU Qi, SONG Yinyin, MA Yanhang, et al. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity[J]. Journal of the American Society, 2018, 141(1): 488-496. |
44 | VINCENT G, XU Heng, ALBALAD J, et al. Postsynthetic selectige ligand cleavage by solid-gas phase ozonolysis fuses micropores into mesopores in metal-organic framworks[J]. Journal of the American Chemical Society, 2018, 140(44): 15022-15030. |
45 | LI Ke, LIN Shaoliang, LI Yongsheng, et al. Aqueous-phase synthesis of mesoporous Zr-based MOFs templated by amphoteric surfactants[J]. Angewandte Chemie: International Edition, 2018, 57(13): 3439-3443. |
46 | CHENG Changming, ZHANG Ruolin, WANG Jiuhai, et al. An ultrasensitive and selective fluorescent nanosensor based on porphyrinic metal-organic framework nanoparticles for Cu2+ detection[J]. Analyst, 2020, 3(145): 797-804. |
47 | ZHAO Jun, LIU Xiang, WU Yapan, et al. Surfactants as promising media in the field of metal-organic frameworks[J]. Coordination Chemistry Reviews, 2019, 391: 30-43. |
48 | WEI Nannan, XIN Xin, DU Jiangyan, et al. A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film[J]. Biosensors & Bioelectronics, 2011, 26(8): 3602-3607. |
49 | HUANG Hongliang, LI Jianrong, WANG Keke, et al. An in-situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks[J]. Nature Communication, 2015, 6(1): 8847. |
50 | QIU Lingguang, XU Tao, LI Zongqun, et al. Hierarchically micro-and mesoporous metal-organic frameworks with tunable porosity[J]. Angewandte Chemie International Edition, 2008, 47(49): 9487-9491. |
51 | PENG Li, ZHANG Jianling, LI Jianshen, et al. Surfactant-directed assembly of mesoporous metal-organic framework nanoplates in ionic liquids[J]. Chemical Communications, 2012, 48(69): 8688-8690. |
52 | CHENG Kaipeng, SVEC F, Yongqin LYU, et al. Hierarchical micro-and mesoporous Zn-based metal-organic frameworks template by hydrogels: their use for enzyme immobilization and catalysis of knoevenagel reaction[J]. Small, 2019, 15(44). 1902927. |
53 | ZHOU Xuefeng, CHEN Lanlan, ZHANG Wenhua, et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrodgen-doped hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters, 2019, 19(8): 4965-4973. |
54 | SHEN Kui, ZHANG Lei, CHEN Xiaodong, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372): 206-210. |
55 | CHEN Congcong, ZHU He, LI Bogeng, et al. Structuring metal-organic framework materials into hierarchically porous composites through one-pot fabrication strategy[J]. Chemistry: A European Journal, 2020, 26(15): 3358-3363. |
56 | WANG Shubai, FAN Yanyan, Yun TEN, et al. Nanoreactor based on macroporous single crystals of metal-organic framework[J]. Small, 2016, 12(41): 5702-5709. |
57 | ZHAG Jiali, ZHANG Feng, YANG Haijun, et al. Graphene oxide as a matrix for enzyme immobilization[J]. Langmuir, 2010, 26(9): 6083-6085. |
58 | ZHAI Fei, FENG Yiyu, ZHOU Kang, et al. Graphene-based chiral liquid crystal materials for optical applications[J]. Journal of Materials Chemistry C, 2019, 7(8) : 2146-2171. |
59 | CHOU Jungchuan, WU Youxiang, Poyu KUO, et al. Determination of L-ascorbic acid using MBs-AOX/GO/IGZO/Al by wireless sensing system and microfluidic framework[J]. IEEE Access, 2019, 7: 45872-45880 |
60 | JIN Qianru, LI Xianghai, DENG Chao, et al. Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly[J]. Journal of Colloid and Interface Science, 2018, 531: 555-563. |
61 | GAO Xia, DING Yu, SHENG Yude, et al. Enzyme immobilization in MOF-derived porous NiO with hierarchical stucture: an efficient and stable enzymatic reactor[J]. ChemCatChem, 2019, 11(12): 2828-2836. |
62 | LIANG Xizhen, HUANG Yanyan, ZHU Yuanyuan, et al. Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy[J]. Angewandte Chemie: International Edition, 2018, 55(20): 5725-5730. |
63 | Seong-Min JO, WURM F R, LANDFESTER K. Oncolytic nanoreactors producing hydrogen peroxide for oxidative cancer therapy[J]. Nano Letters, 2019, 20(1): 526-533. |
64 | WHITE B, DUAN Chengcheng, HELEN E T, et al. Nanoparticle activation methods in cancer treatment[J]. Biomolecules, 2019, 9(5): 202. |
65 | WAN Shuangshuang, CHENG Qian, ZENG Xuan, et al. A Mn(Ⅲ)-sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics[J]. ACS Nano, 2019, 13(6): 6561-6571. |
66 | LI Peng, CHEN Qishui, WANG T C, et al. Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems[J]. Chem., 2018, 4(5): 1022-1034. |
67 | LU Jie, WU Jukang, JIANG Yao, et al. Fabriation of microporous metal-organic frameworks in uninterrupted mesoporous tunnels: hierarchical structure for efficient trypsin immobilization and stabilization[J]. Angewandte Chemie: International Edition, 2020, 132(16): 6490-6496. |
68 | DENG Hexiang, FURUKAWA H, YAGHI O M, et al. Large-pore apertures in a series of metal-organic framworks[J]. Science, 2012, 326(6084): 1018-1023. |
69 | WANG Zhe, HU Shuanggang, YANG Jian, et al. Nanoscale Zr-based MOFs with tailorable size and introduced moesopore for protein delivery[J]. Advanced Functional Materials, 2018, 28(16): 1707356. |
70 | JEONG Guan-Young, SINGH A K, KIM Min-Gyu, et al. Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations[J]. Nature Communications, 2018, 9(1): 3968. |
71 | PENG Shuang, BIE Binglin, SUN Yangzesheng, et al. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells[J]. Nature Communication, 2018, 9(1): 1293. |
72 | PAN Xueting, BAI Lixin, WANG Hui, et al. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy[J]. Advanced Material, 2018, 30(23): 1800180. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[4] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[5] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[6] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[7] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[8] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[9] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[10] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[11] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
[12] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[13] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[14] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[15] | 秦凯, 杨仕林, 李俊, 储震宇, 薄翠梅. 基于卡尔曼滤波算法的葡萄糖酶生物传感器高精度检测方法[J]. 化工进展, 2023, 42(6): 3177-3186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |