1 | MATHEW S, ZAKARIA Z A. Pyroligneous acid--the smoky acidic liquid from plant biomass[J]. Applied Microbiology and Biotechnology, 2015, 99(2): 611-622. | 2 | MARUMOTO S, YAMAMOTO S P, NISHIMURA H, et al. Identification of a germicidal compound against picornavirus in bamboo pyroligneous acid[J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 9106-9111. | 3 | YATAGAI M, NISHIMOTO M, HORI K, et al. Termiticidal activity of wood vinegar, its components and their homologues[J]. Journal of Wood Science, 2002, 48(4): 338-342. | 4 | CHOI Y S, AHN B J, KIM G H. Extraction of chromium, copper, and arsenic from CCA-treated wood by using wood vinegar[J]. Bioresource Technology, 2012, 120: 328-331. | 5 | HAGNER M, PENTTINEN O P, TIILIKKALA K, et al. The effects of biochar, wood vinegar and plants on glyphosate leaching and degradation[J]. European Journal of Soil Biology, 2013, 58: 1-7. | 6 | MUNGKUNKAMCHAO T, KESMALA T, PIMRATCH S, et al. Wood vinegar and fermented bioextracts: natural products to enhance growth and yield of tomato (Solanum lycopersicum L.)[J]. Scientia Horticulturae, 2013, 154: 66-72. | 7 | LIU L, GUO X, WANG S, et al. Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts[J]. Ecotoxicology and Environmental Safety, 2018, 150: 270-279. | 8 | KADOTA M, NIIMI Y. Effects of charcoal with pyroligneous acid and barnyard manure on bedding plants[J]. Scientia Horticulturae, 2004, 101(3): 327-332. | 9 | KOOK K, JEONG J H, KIM K H. The effects of supplemental levels of bamboo vinegar liquids on growth performance, serum profile, carcass grade, and meat quality characteristics in finishing pigs[J]. Journal of Animal Science & Technology, 2005, 47(5): 721-730. | 10 | NINOMIYA Y, ZHANG L, NAGASHIMA T, et al. Combustion and De-SOx behavior of high-sulfur coals added with calcium acetate produced from biomass pyroligneous acid[J]. Fuel, 2004, 83(16): 2123-2131. | 11 | WANG Z, LIN W, SONG W, et al. Preliminary investigation on concentrating of acetol from wood vinegar[J]. Energy Conversion and Management, 2010, 51(2): 346-349. | 12 | ZHANG F, YANG H, GUO D, et al. Effects of biomass pyrolysis derived wood vinegar (WVG) on extracellular polymeric substances and performances of activated sludge[J]. Bioresource Technology, 2019, 274: 25-32. | 13 | SUN G, KANG K, QIU L, et al. Electrochemical performance and microbial community analysis in air cathode microbial fuel cells fuelled with pyroligneous liquor[J]. Bioelectrochemistry, 2019, 126: 12-19. | 14 | MOBIUS A, BOUKIS N, GALLA U, et al. Gasification of pyroligneous acid in supercritical water[J]. Fuel, 2012, 94: 395-400. | 15 | NUNKAEW T, KANTACHOTE D, CHAIPRAPAT S, et al. Use of wood vinegar to enhance 5-aminolevulinic acid production by selected Rhodopseudomonas palustris in rubber sheet wastewater for agricultural use[J]. Saudi Journal of Biological Science, 2018, 25(4):642-650. | 16 | GREWAL A, ABBEY L, GUNUPURU L. Production, prospects and potential application of pyroligneous acid in agriculture[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 152-159. | 17 | BALAT M, BALAT M, KIRTAY E, et al. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems[J]. Energy Conversion and Management, 2009, 50(12): 3147-3157. | 18 | WANG S, DAI G, YANG H, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. | 19 | FU F, YANG D, ZHANG W, et al. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors[J]. Chemical Engineering Journal, 2019, 155: 123721. | 20 | FU F, YANG D, WANG H, et al. Three-dimensional porous framework lignin-derived carbon/ZnO composite fabricated by a facile electrostatic self-assembly showing good stability for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16419-16427. | 21 | SU H, CHANG K, MA Y, et al. Hierarchical flower-like structures composed of cross-shaped vanadium dioxide nanobelts as superior performance anode for lithium and sodium ions batteries[J]. Applied Surface Science, 2019, 480: 882-887. | 22 | ZHANG Y, SU H, WANG C, et al. Heterostructured SnS/TiO2@C hollow nanospheres for superior lithium and sodium storage[J]. Nanoscale, 2019, 11: 12846-12852. | 23 | 焦芮, 孙寒雪, 魏慧娟, 等. 多孔碳材料改性及其在燃料电池中的应用[J]. 化工新型材料, 2018, 46(10): 32-35. | 23 | JIAO Rui, SUN Hanxue, WEI Huijuan, et al. Research progress of porous carbon material modification and its application in fuel cell[J]. New Chemical Materials, 2018, 46(10): 32-35. | 24 | 王才威, 张守玉, 姚云隆, 等. 生物质成型炭燃烧特性研究[J]. 太阳能学报, 2019, 40(7): 2014-2020. | 24 | WANG Caiwei, ZHANG Shouyu, YAO Yunlong, et al. Study on combustion characteristics of carbonized biomass briquettes [J]. Acta Energlae Solaris Sinica, 2019, 40(7): 2014-2020. | 25 | 侯宝鑫, 张守玉, 茆青, 等. 生物质炭化成型燃料直燃特性分析[J]. 燃烧科学与技术, 2016, 22(2): 173-178. | 25 | HOU Baoxin, ZHANG Shouyu, MAO Qing, et al. Direct combustion characteristics of biomass carbonized forming fuel[J]. Journal of Combustion Science and Technology, 2016, 22(2): 173-178. | 26 | 姚云隆, 张守玉, 吴顺延, 等. 成型工艺参数对生物质热压成型燃料理化特性的影响研究[J]. 太阳能学报, 2018, 39(7): 1917-1923. | 26 | YAO Yunlong, ZHANG Shouyu, WU Shunyan, et al. Effect of briquetting process parameters on properties of briquette prepared from biomass[J]. Acta Energlae Solaris Sinica, 2018, 39(7): 1917-1923. | 27 | 吴顺延, 张守玉, 姚云隆, 等. 成型生物质高温炭化及成型炭理化性能研究[J]. 热能动力工程, 2017, 32(12): 106-112. | 27 | WU Shunyan, ZHANG Shouyu, YAO Yunlong, et al. Research on characteristics of the charcoal prepared by the carbonization process of biomass briquette[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(12): 106-112. | 28 | STEINER C, DAS K C, GARCIA M, et al. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol[J]. Pedobiologia, 2008, 51(5/6): 359-366. | 29 | WEI Q, MA X, DONG J. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches[J]. Journal of Analytical & Applied Pyrolysis, 2010, 87(1): 24-28. | 30 | WU Q, ZHANG S, HOU B, et al. Study on the preparation of wood vinegar from biomass residues by carbonization process[J]. Bioresource Technology, 2015, 179: 98-103. | 31 | RASRENDRA C B, GIRISUTA B, DE BOVENKAMP H H VAN, et al. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction usingtri-n-octylamine[J]. Chemical Engineering Journal, 2011, 176: 244-252. | 32 | WANG C, ZHANG S, WU S, et al. Study on an alternative approach for the preparation of wood vinegar from the hydrothermolysis process of cotton stalk[J]. Bioresource Technology, 2018, 254: 231-238. | 33 | WANG C, ZHANG S, WU S, et al. Effect of oxidation processing on the preparation of post-hydrothermolysis acid from cotton stalk[J]. Bioresource Technology, 2018, 263: 289-296. | 34 | SURESH G, PAKDEL H, ROUISSI T, et al. In vitro evaluation of antimicrobial efficacy of pyroligneous acid from softwood mixture[J]. Biotechnology Research and Innovation, 2019, 3(1): 47-53. | 35 | 吴巧美, 张守玉, 候宝鑫, 等. 不同温度下木屑热解制备木醋液实验研究[J]. 太阳能学报, 2016, 37(6): 1534-1541. | 35 | WU Qiaomei, ZHANG Shouyu, HOU Baoxin, et al. Experiment study of wood vinegar production from sawdust under different pyrolysis temperature[J]. Acta Energlae Solaris Sinica, 2016, 37(6): 1534-1541. | 36 | 侯宝鑫, 张守玉, 吴巧美, 等. 生物质热解制备木醋液及其性质研究[J]. 燃料化学学报, 2015, 43(12): 1439-1445. | 36 | HOU Baoxin, ZHANG Shouyu, WU Qiaomei, et al. Wood vinegar and its properties from pyrolysis of biomass[J]. J. Fuel Chem. Technol., 2015, 43(12): 1439-1445. | 37 | 尉芹, 马希汉, 郑滔. 核桃壳木醋液的制取、成分分析及抑菌试验[J]. 农业工程学报, 2008, 24(7): 276-279. | 37 | WEI Qin, MA Xihan, ZHENG Tao. Preparation, chemical constituents analysis and antimicrobial activities of pyroligneous acid of walnut shell[J]. Transactions of the CSAE, 2008, 24(7): 276-279. | 38 | 尉芹, 马希汉, 徐明霞. 杨树木醋液的化学成分分析及抑菌试验[J]. 林业科学, 2008, 44(10): 98-102. | 38 | WEI Qin, MA Xihan, XU Mingxia. Bacteriostasis and chemical components of pyroligneous acid from poplar wood[J]. Scientia Silvae Sinicae, 2008, 44(10): 98-102. | 39 | 张文标, 华毓坤, 王伟龙. 高纯度竹醋液生产和加工工艺的研究[J]. 林产化学与工业, 2003, 23(1): 46-50. | 39 | ZHANG Wenbiao, HUA Yukun, WANG Weilong. Study on technology of high purity bamboo vinegar production[J]. Chemistry and Industry of Forest Products, 2003, 23(1): 46-50. | 40 | 王海英, 杨国亭, 周丹. 木醋液研究现状及其综合利用[J]. 东北林业大学学报, 2004, 32(5):55-57. | 40 | WANG Haiying, YANG Guoting, ZHOU Dan. Research situation and comprehensive utilization of wood vinegar[J]. Journal of Northeast Forestry University, 2004, 32(5):55-57. | 41 | YANG H, YAN R, CHEN H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. | 42 | SAFARIAN S, UNNPORSSON R, RICHTER C, et al. A review of biomass gasification modelling[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 378-391. | 43 | 卢辛成, 蒋剑春, 何静, 等. 杉木屑分段热解制备木醋液及其特性研究[J]. 林产化学与工业, 2019, 39(2): 96-102. | 43 | LU Xincheng, JIANG Jianchun, HE Jing, et al. Preparation and properties of wood vinegar from pyrolysis of fir sawdust under different temperatures[J]. Chemistry and Industry of Forest Products, 2019, 39(2): 96-102. | 44 | 尉芹, 马希汉, 朱卫红, 等. 不同温度段苹果枝木醋液化学组成、抑菌及抗氧化活性比较[J]. 林业科学, 2009, 45(12): 16-21. | 44 | WEI Qin, MA Xihan, ZHU Weihong, et al. Comparison of chemical compositions, antimicrobial and antioxidant activities of pyroligneous acids of apple branches[J]. Scientia Silvae Sinicae, 2009, 45(12): 16-21. | 45 | ZULKARAMI B, ASHRAFUZZAMAN M, HUSNI M, et al. Effect of pyroligneous acid on growth, yield and quality improvement of rockmelon in soilless culture[J]. Australian Journal of Crop Science, 2011, 5(12): 1508-1514. | 46 | MATHEW S, ZAKARIA Z A, MUSA N F. Antioxidant property and chemical profile of pyroligneous acid from pineapple plant waste biomass[J]. Process Biochemistry, 2015, 50(11): 1985-1992. | 47 | WANG H F, WANG J L, WANG C, et al. Effect of bamboo vinegar as an antibiotic alternative on growth performance and fecal bacterial communities of weaned piglets[J]. Livestock Science, 2012, 144(1-2): 173-180. | 48 | WEI Q, MA X, ZHAO Z, et al. Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell[J]. Journal of Analytical and Applied Pyrolysis, 2010, 88(2): 149-154. | 49 | HWANG Y H, MATSUSHITA Y I, SUGAMOTO K, et al. Antimicrobial effect of the wood vinegar from Cryptomeria japonica sapwood on plant pathogenic microorganisms[J]. Journal of Microbiology & Biotechnology, 2005, 15(5): 1106-1109. | 50 | BAIMARK Y, NIAMSA N. Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets[J]. Biomass and Bioenergy, 2009, 33(6/7): 994-998. | 51 | GUILLéN M D, MANZANOS M J. Characteristics of smoke flavourings obtained from mixtures of oak (Quercus sp.) wood and aromatic plants (Thymus vulgaris L. and Salvia lavandulifolia Vahl.)[J]. Flavour and Fragrance Journal, 2005, 20(6): 676-685. | 52 | GUILLéN MARI?A D, MANZANOS M J. Study of the volatile composition of an aqueous oak smoke preparation[J]. Food Chemistry, 2002, 79(3): 283-292. | 53 | MASCHIO G, KOUFOPANOS C, LUCCHESI A. Pyrolysis, a promising route for biomass utilization[J]. Bioresource Technology, 1992, 42(3): 219-231. | 54 | VELMURUGAN N, HAN S S, LEE Y S. Antifungal activity of neutralized wood vinegar with water extracts of pinus densiflora and quercus serrata saw dusts[J]. International Journal of Environmental Research, 2009, 3(2): 167-176. | 55 | LOO A Y, JAIN K, DARAH I. Antioxidant and radical scavenging activities of the pyroligneous acid from a mangrove plant, Rhizophora apiculata[J]. Food Chemistry, 2007, 104(1): 300-307. | 56 | LEENA F, KUOPPALA E, TIILIKKALA K, et al. Chemical composition of birch wood slow pyrolysis products[J]. Energy & Fuels, 2012, 26(2): 1275-1283. | 57 | MOHAN D, PITTMAN JR C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy & Fuels, 2006, 20(3): 848-889. | 58 | BRIDGEWATER A V, CZERNIK S, PISKORZ J. An overview of fast pyrolysis[M]//Progress in Thermochemical Biomass Conversion. Oxford, UK: Blackwell Science Ltd, 2001: 977-997. | 59 | BALAT M. Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis[J]. Energy Sources, 2008, 30(7): 620-635. | 60 | ORAMAHI H A, YOSHIMURA T. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl[J]. Journal of Wood Science, 2013, 59(4): 344-350. | 61 | MA X, WEI Q, ZHANG S, et al. Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid[J]. Journal of Analytical & Applied Pyrolysis, 2011, 91(2): 338-343. | 62 | YANG J F, YANG C H, LIANG M T, et al. Chemical composition, antioxidant, and antibacterial activity of wood vinegar from litchi chinensis[J]. Molecules, 2016, 21(9): 1150. | 63 | 柏明娥, 陈顺伟, 庄晓伟, 等. 不同精制工艺对竹醋液理化性质的影响[J]. 生物质化学工程, 2005, 39(2): 25-27. | 63 | BAI Minge, CHEN Shunwei, ZHUANG Xiaowei, et al. The impact of the different preparation technics on properties of bamboo vinegar[J]. Biomass Chemical Engineering, 2005, 39(2): 25-27. | 64 | MA C, SONG K, YU J, et al. Pyrolysis process and antioxidant activity of pyroligneous acid from Rosmarinus officinalis leaves[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 38-47. | 65 | LI Z, ZHANG L, CHEN C, et al. A new method for comprehensive utilization of wood vinegar by distillation and liquid-liquid extraction [J]. Process Biochemistry, 2018, 75: 194-201. | 66 | LOO A Y, JAIN K, DARAH I. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata[J]. Food Chemistry, 2008, 107(3): 1151-1160 | 67 | WIEDERSCHAIN G Y. Polysaccharides. structural diversity and functional versatility[J]. Biochemistry, 2007, 72(6): 675. | 68 | SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of Analytical & Applied Pyrolysis, 2010, 87(2): 199-206. | 69 | PONDER G R, RICHARDS G N. Thermal synthesis and pyrolysis of a xylan[J]. Carbohydrate Research, 1991, 218(91): 143-155. | 70 | SHEN D K, GU S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology, 2009, 100(24): 6496-6504. | 71 | PISKORZ J, RADLEIN D, SCOTT D S. On the mechanism of the rapid pyrolysis of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 1986, 9(2): 121-137. | 72 | HOSOYA T, KAWAMOTO H, SAKA S. Different pyrolytic pathways of levoglucosan in vapor- and liquid/solid-phases[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 64-70. | 73 | KAWAMOTO H, MORISAKI H, SAKA S. Secondary decomposition of levoglucosan in pyrolytic production from cellulosic biomass[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1-2): 247-251. | 74 | LI S, LYONS-HART J, BANYASZ J L, et al. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1809-1817. | 75 | RICHARDS G N. Glycolaldehyde from pyrolysis of cellulose[J]. Journal of Analytical & Applied Pyrolysis, 1987, 10(3): 251-255. | 76 | BANYASZ J L, LI S, LYONS-HART J L, et al. Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution[J]. Journal of Analytical and Applied Pyrolysis, 2001, 57(2): 223-248. | 77 | SHAFIZADEH F, LAI Y Z. Thermal degradation of 1,6-anhydro-β-D-glucopyranose[J]. The Journal of Organic Chemistry, 1972, 37(2): 278-284. | 78 | CHENG S, WILKS C, YUAN Z, et al. Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent[J]. Polymer Degradation and Stability, 2012, 97(6): 839-848. | 79 | ASMADI M, KAWAMOTO H, SAKA S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei[J]. Journal of Analytical & Applied Pyrolysis, 2011, 92(1): 88-98. | 80 | HUANG J B, LIU C, REN L R, et al. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. Journal of Fuel Chemistry and Technology, 2013, 41(6): 657-666. | 81 | WANG M, LIU C, XU X, et al. Theoretical study of the pyrolysis of vanillin as a model of secondary lignin pyrolysis[J]. Chemical Physics Letters, 2016, 654(16): 41-45. | 82 | ASMADI M, KAWAMOTO H, SAKA S. Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates[J]. Journal of Analytical & Applied Pyrolysis, 2011, 92(1): 76-87. | 83 | HOSOYA T, KAWAMOTO H, SAKA S. Role of methoxyl group in char formation from lignin-related compounds[J]. Journal of Analytical and Applied Pyrolysis, 2009, 84(1): 79-83. |
|