1 | 李丽. VOC废气治理工程技术方案探究[J]. 低碳世界, 2017, 27(21): 17-18. | 1 | LI L. Research on technical scheme of VOC waste gas treatment engineering[J]. Low Carbon World, 2017, 27 (21): 17-18. | 2 | BOUCHRA B, YANN L M, ERIC F. Energy efficiency of a hybrid membrane/condensation process for VOC (volatile organic compounds) recovery from air: A generic approach[J]. Energy, 2016, 95: 291-302. | 3 | ZHANG X, GAO B, ZHENG Y, et al. Biochar for volatile organic compound (VOC) removal: sorption performance and governing mechanisms[J]. Bioresource Technology, 2017, 245: 606-614. | 4 | AN Y X, FU Q, ZHANG D H, et al. Performance evaluation of activated carbon with different pore sizes and functional groups for VOC adsorption by molecular simulation[J]. Chemosphere, 2019, 227: 9-16. | 5 | LI Q, DING W C, YONG Y, et al. Adsorption performance and mechanism of biochars for gaseous VOCs[J]. Harbin Institute of Technology, 2017, 49: 77-84. | 6 | ALFREDO-SANTIAGO R, PIERRE-FRANCOIS B, LUDOVIC P, et al. Assessment of VOC absorption in hydropHobic ionic liquids: measurement of partition and diffusion coefficients and simulation of a packed column[J]. Chemical Engineering Journal, 2019, 360: 1416-1426. | 7 | HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. | 8 | LI C L, ZHAO Y X, SONG H, et al. A review on recent advances in catalytic combustion of chlorinated volatile organic compounds[J]. Journal of Chemical Technology & Biotechnology, 2020. | 9 | ZOU W X, GAO B, DONG L, et al. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review[J]. Chemosphere, 2019, 218: 845-859. | 10 | MARíA D L M Bi, MARíA L S, ALFANO O M. Photocatalytic reactor modeling: application to advanced oxidation processes for chemical pollution abatement[J]. Topics in Current Chemistry, 2019, 377(5): 22. | 11 | BEIEGI B H M, THORPE R B, OUKI S, et al. Hydrogen sulphide and VOC removal in biotrickling filters: comparison of data from a full-scale, low-emission unit with kinetic models[J]. Chemical Engineering Science, 2019, 208: 115033. | 12 | DAMIAN K, KRZYSZTOF U, KRZYSZTOF B, et al. Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant[J]. Journal of Environmental Management, 2019, 236: 413-419. | 13 | SUN S H, JIA T P, CHEN K Q, et al. Simultaneous removal of hydrogen sulfide and volatile organic sulfur compounds in off-gas mixture from a wastewater treatment plant using a two-stage bio-trickling filter system[J]. Frontiers of Environmental Science & Engineering, 2019, 13(4): 1-13. | 14 | 黄桂凤, 黄立维. 溶液吸收结合铁碳微电解法降解模拟废气中二氯甲烷[J]. 化工学报, 2014, 65(9): 3599-3603. | 14 | HUANG G F, HUANG L W.Degradation of methylene chloride in simulated exhaust gas by solution absorption combined with iron-carbon microelectrolysis[J]. CIESC Journal, 2014, 65(9): 3599-3603. | 15 | WU H, YAN H Y, QUAN Y, et al. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment[J]. Journal of Environmental Management, 2018, 222: 409-419. | 16 | MALAKAR S, SAHA P D, BASKARAN D, et al. Comparative study of biofiltration process for treatment of VOCs emission from petroleum refinery wastewater: a review[J]. Environmental Technology & Innovation, 2017, 8: 441-461. | 17 | KIRCHNER K, SCHLACHTER U, REHM H J. Biological purification of exhaust air using fixed bacterial monocultures[J]. Applied Microbiology & Biotechnology, 1989, 31(5/6): 629-632. | 18 | YU J M, CHEN J M, WANG J D. Removal of dichloromethane from waste gases by a biotrickling filter[J]. Environmental Sciences, 2006, 18(6): 1073-1076. | 19 | ATSUKO A, HAMAMOTO H, OKANO T. Use of lees materials as an adsorbent for removal of organochlorine compounds or benzene from wastewater[J]. Chemosphere, 2005, 58(6): 817-822. | 20 | LI T, LI H, LI C L.A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air[J]. Chemosphere, 2020, 250: 126338. | 21 | 钟帼瑛. 化工行业VOC废气治理探讨[J]. 资源节约与环保, 2018, 200 (7): 89-90. | 21 | ZHONG G Y. Discussion on VOC waste gas treatment in chemical industry [J]. Resources Economization & Environment Protection, 2018, 200 (7): 89-90. | 22 | BRUNNER W, STAUB D, LEISINGER T. Bacterial degradation of dichloromethane[J]. Appl. Environ. Microbiol., 1980, 40(5): 950-958. | 23 | TOUROVA T P, KUZNETSOV B B, DORONINA N V, et al. Phylogenetic analysis of dichloromethane-utilizing aerobic methylotrophic bacteria[J]. Microbiology, 2001, 70(1): 79-83. | 24 | 庄庆丰, 章晶晓, 倪建国, 等. 二氯甲烷的生物降解技术进展[J]. 科技通报, 2012, 28(1): 178-183. | 24 | ZHUANG Q F, ZHANG J X, NI J G, et al.Progress in biodegradation technology of dichloromethane[J]. Bulletin of Science and Technology, 2012, 28(1): 178-183. | 25 | YANG C P, CHEN H, ZENG G M, et al. Biomass accumulation and control strategies in gas biofiltration[J]. Biotechnology Advances, 2010, 28(4): 531-540. | 26 | DIKS R, OTTENGRAF S. Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter (Part Ⅰ)[J]. Bioprocess Engineering, 1991, 6(3): 93-99. | 27 | MORALES M, HERNMáNDEZ S, COMABé T, et al. Effect of drying on biofilter performance: modeling and experimental approach[J]. Environmental Science & Technology, 2003, 37(5): 985. | 28 | MYSLIWIEC M J, VANDERGHEYNST J S, RASHID M M, et al. Dynamic volume-averaged model of heat and mass transport within a compost biofilter: Ⅰ. Model development[J]. Biotechnology & Bioengineering, 2001, 73(4): 282-294. | 29 | ACHINTA B, PETER A, GOSTOMSKI. Fate of degraded pollutants in waste gas biofiltration: an overview of carbon end-points[J]. Biotechnology Advances, 2019, 37(4): 579-588. | 30 | HENDY L, CINDY G, BETTINA R, et al. Challenges to developing methane biofiltration for coal mine ventilation air: a review[J]. Water Air & Soil Pollution, 2013, 224(6): 1-15. | 31 | OTTENGRAF S S. Biological systems for waste gas elimination[J]. Trends in Biotechnology, 1987, 5(5): 132-136. |
|