1 | BASTAKOTI D, ZHANG H, LI D, et al. An overview on the developing trend of pulsating heat pipe and its performance[J]. Applied Thermal Engineering, 2018, 141: 305-332. | 2 | HAN X, WANG X, ZHENG H, et al. Review of the development of pulsating heat pipe for heat dissipation[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692-709. | 3 | 屈健. 脉动热管技术研究及应用进展[J]. 化工进展, 2013, 32(1): 33-41. | 3 | QU J. Oscillating heat pipes:state of the art and applications[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 33-41. | 4 | LI Y, WANG Q, CHEN S, et al. Experimental investigation of the characteristics of cryogenic oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2014, 79: 713-719. | 5 | GOSHAYESHI H R, GOODARZI M, SAFAEI M R, et al. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field[J]. Experimental Thermal and Fluid Science, 2016, 74: 265-270. | 6 | AYEL V, ARANEO L, MARZORATI P, et al. Visualization of flow patterns in closed loop flat plate pulsating heat pipe acting as hybrid thermosyphons under various gravity levels[J]. Heat Transfer Engineering, 2019, 40(3/4): 227-237. | 7 | 曹小林, 席战利, 周晋, 等. 脉动热管运行可视化及传热与流动特性的实验研究[J]. 热能动力工程, 2004, 19(4): 411-415. | 7 | CAO X L, XI Z L, ZHOU J, et al. Experimental investigation of the visualization of pulsating heat pipe operation as well as heat transfer and flow characteristics[J]. Journal of Engineering for Thermal Energyand Power, 2004, 19(4): 411-415. | 8 | CHIEN K H, LIN Y T, CHEN Y R, et al. A novel design of pulsating heat pipe with fewer turns applicable to all orientations[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5722-5728. | 9 | KWON G H, KIM S J. Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel[J]. International Journal of Heat and Mass Transfer, 2015, 89: 817-828. | 10 | 李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6): 2263-2270. | 10 | LI X J, QU J, HAN X Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6): 2263-2270. | 11 | JI Y L, XU C, MA H B, et al. An experimental investigation of the heat transfer performance of an oscillating heat pipe with copper oxide (CuO) microstructure layer on the inner surface[J]. Journal of Heat Transfer, 2013, 135: 074504. | 12 | ZHANG F Z, WINHOLTZ R A, BLACK W J, et al. Effect of hydrophilic nanostructured cupric oxide surfaces on the heat transport capability of a flat-plate oscillating heat pipe[J]. Journal of Heat Transfer, 2016, 138(6): 062901. | 13 | HAO T, MA X, LAN Z, et al. Effects of superhydrophobic and superhydrophilic surfaces on heat transfer and oscillating motion of an oscillating heat pipe[J]. Journal of Heat Transfer, 2014, 136(8): 082001. | 14 | HAO T, MA X, LAN Z, et al. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2014, 72: 50-65. | 15 | SRINIVASAN V, KHANDEKAR S, BOUAMRANE N, et al. Motion of an isolated liquid plug inside a capillary tube: effect of contact angle hysteresis[J]. Experiments in Fluids, 2015, 56(14): 1-6. | 16 | SOMMERS A D, BREST T J, EID K F. Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates[J]. Langmuir, 2013, 29(38): 12043-12050. | 17 | DANIEL S, CHAUDHURY M K, CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291: 633-636. | 18 | XIE X, WENG Q, LUO Z, et al. Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication[J]. International Journal of Heat and Mass Transfer, 2018, 125: 658-669. | 19 | SINGH M, DATLA N V, KONDARAJU S, et al. Enhanced thermal performance of micro heat pipes through optimization of wettability gradient[J]. Applied Thermal Engineering, 2018, 143: 350-357. | 20 | CHENG J, WANG G, ZHANG Y, et al. Enhancement of capillary and thermal performance of grooved copper heat pipe by gradient wettability surface[J]. International Journal of Heat and Mass Transfer, 2017, 107: 586-591. | 21 | OH S K, NAKAGAWA M, ICHIMURA K. Photocontrol of liquid motion on an azobenzene monolayer[J]. Journal of Materials Chemistry, 2002, 12(8): 2262-2269. | 22 | WU H, ZHU K, CAO B, et al. Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets[J]. Soft Matter, 2017, 13(16): 2995-3002. | 23 | 纪玉龙, 庾春荣, 张庆振, 等. 表面浸润程度对脉动热管传热性能的影响[J]. 化工学报, 2017, 68(S1): 141-149. | 23 | JI Y L, YU C R, ZHANG Q Z, et al. Effect of surface wettability on heat transfer performance of oscillating heat pipe[J]. CIESC Journal, 2017, 68(S1): 141-149. | 24 | HUANG Z, ZHANG J, CHENG J, et al. Preparation and characterization of gradient wettability surface depending on controlling Cu(OH)2 nanoribbon arrays growth on copper substrate[J]. Applied Surface Science, 2012, 259: 142-146. | 25 | CHENG J, TAO Y, ZHANG Y, et al. Liquid flow in rectangular microchannels with gradient wettability inner surface driven by capillary force and gravity[J]. Advanced Materials Research, 2011, 233-235: 1152-1156. | 26 | CHENG P, MA H B. A mathematical model of an oscillating heat pipe[J]. Heat Transfer Engineering, 2011, 32(11/12): 1037-1046. |
|