1 | LV Yi, LIU Yongkang, CHANG Chaomiao, et al. Octopus tentacles-like WO3/C@CoO as high property and long life-time electrocatalyst for hydrogen evolution reaction[J]. Electrochim Acta, 2018, 281(10):1-8. | 2 | WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors[J]. Chemical Society Reviews, 2004, 104(10): 4245-4269. | 3 | FRANCOIS B, PRESSER V, BALDUCCI A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26(14): 2283-2283. | 4 | CHEN Hao, WANG Fang, TONG Shanshan, et al. Porous carbon with tailored pore size for electric double layer capacitors application[J]. Applied Surface Science, 2012, 258(16): 6097-6102. | 5 | RAYMUNDO P E, KIERZEK K, MACHNIKOWSKI J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in differentelectrolytes[J]. Carbon, 2006, 44(12): 2498-2507. | 6 | WANG Xina, TONG Rui, WANG Yi, et al. Surface roughening of nickel cobalt phosphide nanowire arrays/Ni foam for enhanced hydrogen evolution activity[J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34270-34279. | 7 | JAMPANI P, MANIVANNAN A, KUMTA P N. Advancing the supercapacitor materials and technology frontier for improving power qualit[J]. The Electrochemical Society Interface, 2010, 19(3): 57-62. | 8 | GUO Yupeng, QI Jurui, JIANG Yanqiu, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Chemical Physics, 2003, 80(3): 704-709. | 9 | SHUKLA A K, BANCERJEE A, RAVIKUMAR M K, et al. Electrochemical capacitors: technical challenges and prognosis for future markets[J]. Electrochimica Acta, 2012, 84(1): 165-173. | 10 | KANDALAKAR S G, GUNJAKAR J L, LOKHANDE C D, et al. Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 594-598. | 11 | ZHANG Lili, ZHOU Rui, ZHAO X S. Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2010, 20(29): 5983-5992. | 12 | ZHI Mingjia, XIANG Chengcheng, LI Jiangtian, et al. Nanostructured carbon-metal oxidecomposite electrodes for supercapacitor review[J]. Nanoscale, 2013, 5(1): 72-88. | 13 | XU Juan, GAO Lan, CAO Jianyu, et al. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material[J]. Electrochimica Acta, 2010, 56(2): 732-736. | 14 | JIANG J, KUCERNAK A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization[J]. Electrochimica Acta, 2002,47(15): 2381-2386. | 15 | PATIL U M, SALUNKHE R R, GURAV K V, et al. Chemically deposited nanocrystalline NiO thin films for supercapacitor application[J]. Applied Surface Science, 2008, 255(5): 2603-2607. | 16 | FENG Jinxian, XU Han, DONG Yutao, et al. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots[J]. Angewandte Chemie International Edition in English, 2017, 56(11): 2960-2964. | 17 | FARRUKH I D, KEVIN R M, MOHAMMED E. Morphology and property control of NiO nanostructures for supercapacitor applications[J]. Nanoscale Research Letters, 2013, 8(1): 363-368. | 18 | WU Qingfeng, LIU Yafei, HU Zhonghua. Flower-like NiO microspheres prepared by facile method as supercapacitor electrodes[J]. Journal of Solid State Electrochemistry, 2013, 17(6): 1711-1716. | 19 | PATIL U M, SONG J S, KILKARNI S B, et al. Enhanced super-capacitive performance of chemically grown cobalt-nickel hydrox-ides on three-dimensional graphene foam electrodes[J]. ACS Appl. Mater. & Interfaces, 2014, 6(4): 2450-2458. | 20 | BEGUIN F, PRESSER V, BALDUCCI A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26(14): 2283-2283. | 21 | WANG Huanwen, ZHU Changrong, CHAO Dongliang, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(1): 1-18. | 22 | ZHENG J P, HUANG J, JOW T R. The limitations of energy density for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1997, 144(6): 2026-2031. | 23 | JAGADALE A D, KUMBHAR V S, LOKHANDE C D. Supercapacitive activities of potentiodynamically deposited nanoflakes of cobalt oxide (Co3O4) thin film electrode[J]. Journal of Colloid and Interface Science, 2013, 406(15): 225-230. | 24 | JAGADALE A D, KUMBHAR V S, BULAKHE R N. Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes[J]. Energy, 2014, 64(1): 234-241. | 25 | MUSTAFA Aghazadeh. Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material[J]. Journal of Applied Electrochemistry, 2012, 42(2): 89-94. | 26 | MUSTAFA Aghazadeh. Pulse electrochemical synthesis of capsule-like nanostructures of Co3O4 and investigation of their capacitive performance[J]. Applied Surface Science, 2013, 287: 187-194. | 27 | MUSTAFA Aghazadeh, SOMAYDE Dalvand. Large-scale and facile electrochemical preparation of β-Co(OH)2 nanocapsules and investigation of their supercapacitive performance[J]. Journal of the Electrochemical Society, 2014, 161(1): D18-D25. | 28 | THOMBERG T, KURIG H, JANES A, et al. Mesoporous carbide-derived carbons prepared from different chromium carbides[J]. Microporous and Mesoporous Materials, 2011, 141(1/2/3): 88-93. | 29 | WU J B, LIN Y, XIA X H, et al. Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film[J]. Electrochimica Acta, 2011, 56(20): 7163-7170. | 30 | RAHMAN H, KEIVAN A, ABDOLLAH S, et al. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method[J]. Applied Surface Science, 2013, 276(10): 512-520. | 31 | DENG Ming-Jay, HUANG Fu-Lu, SUN I-Wen, et al. An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity[J]. Nanotechnology, 2009, 20(17): 1-5. | 32 | LI Zhangpeng, WANG Jinqing. Rapid synthesis of grapheme/cobalt hydroxide composite with enhanced electrochemical performance for supercapacitors[J]. Journal of Power Sources, 2014, 245(6): 224-231. |
|