1 | AUTHAYANUN S, IM-ORB K, ARPORNWICHANOP A. A review of the development of high temperature proton exchange membrane fuel cells[J]. Chinese Journal of Catalysis, 2015, 36(4): 473-483. | 2 | 李冰, 李辉, 马建新, 等. 质子交换膜燃料电池的现状以及在电动车应用上的挑战(英文)[J]. 汽车安全与节能学报, 2010, 1(4): 260-269. | 2 | LI B, LI H, MA J X, et al. Status quo of proton exchange membrane fuel cells and challenges in the application of electric vehicles[J]. Journal of Automotive Safety and Energy, 2010, 1(4): 260-269. | 3 | 木子林. 新能源产业振兴和发展规划[J]. 山西能源与节能, 2010(2): 53. | 3 | MU Z L. Revitalization and development plan of new energy industry[J]. Energy and Energy Conservation, 2010(2): 53. | 4 | 第三篇 转型升级 提高产业核心竞争力[J]. 领导决策信息, 2011(12): 15-23. | 4 | Chapter Ⅲ Transformation and upgrading to improve industrial core competitiveness[J]. Information on Leadership Decision-making, 2011(12): 15-23. | 5 | 王佳, 方海峰. 我国燃料电池汽车产业发展现状、问题与建议[J]. 汽车工业研究, 2018(9): 12-15. | 5 | WANG J, FANG H F. Development status, problems and suggestions of fuel cell vehicle industry in China[J]. Auto Industry Research, 2018(9): 12-15. | 6 | 财政部等四部门调整完善新能源汽车推广应用财政补贴政策[J]. 能源研究与利用, 2018(2): 12.Ministry of finance and other four departments adjust and improve the financial subsidy policies for the promotion and application of new energy vehicles[J]. Energy Research & Utilization, 2018(2): 12. | 7 | 周苏, 纪光霁, 马天才, 等. 车用质子交换膜燃料电池系统技术现状[J]. 汽车工程, 2009, 31(6): 489-495. | 7 | ZHOU S, JI G G, MA T C, et al. Current status of proton exchange membrane fuel cell system for vehicles[J]. Automotive Engineering, 2009, 31(6): 489-495. | 8 | SMITHA B, SRIDHAR S, KHAN A. Solid polymer electrolyte membranes for fuel cell applications: a review[J]. Journal of Membrane Science, 2005, 259(1): 10-26. | 9 | 程年才, 木士春, 潘牧, 等. 质子交换膜燃料电池催化剂的耐久性研究[J]. 电池工业, 2007(3): 209-211, 216. | 9 | CHENG N C, MU S C, PAN M, et al. Study on the durability of proton exchange membrane fuel cell catalysts[J]. Chinese Battery Industry, 2007(3): 209-211, 216. | 10 | CHANDAN A, HATTENBERGER M, EL-KHAROUF A. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC): a review[J]. Journal of Power Sources, 2013, 231: 264-278. | 11 | 涂正凯, 余意. 质子交换膜燃料电池水热管理技术基础及应用[M]. 北京:科学出版社,2017.TU Z K, YU Y. Fundamentals and application of water and heat management technology of proton exchange membr ane fuel cell[M]. Beijing: Science Press, 2017. | 12 | 王吉华, 居钰生, 易正根, 等. 燃料电池技术发展及应用现状综述(上)[J]. 现代车用动力, 2018(2): 7-12, 39. | 12 | WANG J H, JU Y S, YI Z G, et al. Review on the development and application of fuel cell technology (part 1)[J]. Modern Vehicle Power, 2018(2): 7-12, 39. | 13 | 中国汽车技术研究中心. 中国燃料电池汽车发展路线图[EB/OL]. (2018-02-12) [2018-04-15]. https: //wenku. baidu. com/view/dffaa284846a561252 | 13 | d380eb6294dd88d1d23d1b.html. | null | China Automotive Technology Research Center. China fuel cell vehicle development roadmap [EB/OL]. (2018-02-12) [2018-04-15]. https: //wenku. baidu. com/view/dffaa284846a561252 | null | d380eb6294dd88d1d23d1b.html. | 14 | 李建秋, 方川, 徐梁飞. 燃料电池汽车研究现状及发展[J]. 汽车安全与节能学报, 2014, 5(1): 17-29. | 14 | LI J Q, FANG C, XU L F, Research status and development of fuel cell vehicles[J]. Journal of Automotive Safety and Energy, 2014, 5(1): 17-29. | 15 | 简述高功率密度燃料电池电堆技术[EB/OL]. http: / | 15 | /.Describe the high power density fuel cell reactor technology[EB/OL]. http: //. | 16 | 吴文瀚. 上海氢燃料电池汽车产业发展环境分析[J]. 上海汽车, 2014(9): 29-33. | 16 | WU W H. Development environment analysis of hydrogen fuel cell vehicle industry in Shanghai[J]. Shanghai Auto, 2014(9): 29-33. | 17 | QU L J, WANG Z Q, GUO X Q, et al. Effect of electrode Pt-loading and cathode flow-field plate type on the degradation of PEMFC[J]. Journal of Energy Chemistry, 2019, 35(8): 95-103. | 18 | 刘世伟, 梁亮, 李晨阳, 等. 高温质子交换膜燃料电池的复合催化层电极[J]. 应用化学, 2019, 36(9): 1085-1090. | 18 | LIU S W, LINAG L, LI C Y, et al. Composite catalytic layer electrode for high temperature proton exchange membrane fuel cell[J]. Chinese Journal of Applied Chemistry, 2019, 36(9): 1085-1090. | 19 | 王诚, 赵波, 张剑波. 质子交换膜燃料电池膜电极的关键技术[J]. 科技导报, 2016, 34(6): 62-68. | 19 | WANG C, ZHAO B, ZHANG J B. Key technology of membrane electrode in proton exchange membrane fuel cell[J]. Science & Technology Review, 2016, 34(6): 62-68. | 20 | 夏丰杰, 叶东浩. 质子交换膜燃料电池膜电极综述[J]. 船电技术, 2015, 35(6): 24-27. | 20 | XIA F J, YE D H. Review of membrane electrodes for proton exchange membrane fuel cells[J]. Marine Electric & Electronic Engineering, 2015, 35(6): 24-27. | 21 | HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2005, 104(10): 4587-611. | 22 | AMJADI M, ROWSHANZAMIR S, PEIGHAMBARDOUST S J, et al. Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9252-9260. | 23 | 熊小鹏. 高温质子交换膜燃料电池用Nafion复合膜的研究[D]. 天津: 天津大学, 2008.XIONG X P. Study on Nafion composite membrane for high temperature proton exchange membrane fuel cell [D]. Tianjin : Tianjin University, 2008. | 24 | SIGWADI R, DHLAMINI M S, MOKRANI T, et al. Enhancing the mechanical properties of zirconia/Nafion ? nanocomposite membrane through carbon nanotubes for fuel cell application[J]. Heliyon, 2019, 5(7): e02112. | 25 | SIGWADI R, DHLAMINI M S, MOKRANI T, et al. The proton conductivity and mechanical properties of Nafion?/ZrP nanocomposite membrane[J]. Heliyon, 2019, 5(8): e02240. | 26 | WANG S B, SHI L, ZHANG S, et al. Proton-conducting amino acid-modified chitosan nanofibers for nanocomposite proton exchange membranes[J]. European Polymer Journal, 2019, 119: 327-334. | 27 | 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(s1): 310-320. | 27 | WANG C, WANG S B, ZHANG J B, et al. Material components of proton exchange membrane fuel cell for vehicles[J]. Progress in Chemistry, 2015, 27(s1): 310-320. | 28 | YOU D J, KIM D H, LILE J R D, et al. Pd core-shell alloy catalysts for high-temperature polymer electrolyte membrane fuel cells: effect of the core composition on the activity towards oxygen reduction reactions[J]. Applied Catalysis A: General, 2018, 562: 250-257. | 29 | LI B, YAN Z Y, DREW C, et al. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 262: 488-493. | 30 | WEI Z D, GUO H T, TANG Z Y. Heat treatment of carbon-based powders carrying platinum alloy catalysts for oxygen reduction: influence on corrosion resistance and particle size[J]. Journal of Power Sources, 1996, 62(2): 233-236. | 31 | 曾敏, 王健农. Pt-Ir合金化提高PEMFC中纯铂催化剂的催化活性和稳定性[J]. 材料导报, 2016, 30(s2): 213-218. | 31 | ZENG M, WANG J N. Pt-ir alloying enhances the catalytic activity and stability of pure platinum catalysts in PEMFC[J]. Materials Reports, 2016, 30(s2): 213-218. | 32 | 张健, 党岱, 姬文晋, 等. 非铂燃料电池电催化剂研究进展[J]. 化工进展, 2019, 38(7): 3153-3162. | 32 | ZHANG J, DANG D, JI W J, et al. Research progress on electrocatalysts for non-platinum fuel cells[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3153-3162. | 33 | ANDERSEN S M, BORGHEI M, LUND P, et al. Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells[J]. Solid State Ionics, 2013, 231: 94-101. | 34 | 李鹏刚, 王靖轩, 郭飞飞, 等. 介孔碳的研究进展及应用[J]. 化工进展, 2018, 37(1): 149-158. | 34 | LI P G, WANG J X, GUO F F, et al. Research progress and application of mesoporous carbon[J]. Chemical Industry and Engineering Progress, 2008, 37(1): 149-158. | 35 | MADADI F, REZAEIAN A, EDRIS H, et al. Improving performance in PEMFC by applying different coatings to metallic bipolar plates[J]. Materials Chemistry and Physics, 2019, 238: 121911. | 36 | JIN C K, LEE K H, KANG C G. Performance and characteristics of titanium nitride, chromium nitride, multi-coated stainless steel 304 bipolar plates fabricated through a rubber forming process[J]. International Journal of Hydrogen Energy, 2015, 40(20): 6681-6688. | 37 | WANG Y L, ZHANG S H, WANG P, et al. Synthesis and corrosion protection of Nb doped TiO2 nanopowders modified polyaniline coating on 316 stainless steel bipolar plates for proton-exchange membrane fuel cells[J]. Progress in Organic Coatings, 2019, 137: 105327. | 38 | LOBATO J, CA?IZARES P, RODRIGO M A, et al. Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2010, 196(9): 4209-4217. | 39 | CHEN S Z, XIA Z X, ZHANG X Y, et al. Numerical studies of effect of interdigitated flow field outlet channel width on PEM fuel cell performance[J]. Energy Procedia, 2019, 158: 1678-1684. | 40 | TACCANI R, ZULIANI N. Effect of flow field design on performances of high temperature PEM fuel cells: experimental analysis[J]. International Journal of Hydrogen Energy, 2010, 36(16): 10282-10287. | 41 | 吴禹. 高温质子交换膜燃料电池仿真与设计[D]. 杭州: 浙江大学, 2014.WU Y. Simulation and design of high temperature proton exchange membrane fuel cell [D]. Hangzhou: Zhejiang university, 2014. | 42 | 木崎干士, 孔莉. 丰田燃料电池系统“TFCS”[J]. 国外内燃机, 2017, 49(2): 24-29. | 42 | GASHI KINZAKI, KONG L. Toyota fuel cell system "TFCS"[J]. Foreign Internal Combustion Engine, 2017, 49(2): 24-29. | 43 | YAN X H, GUAN C, ZHANG Y, et al. Flow field design with 3D geometry for proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2019, 147: 1107-1114. | 44 | 覃有为, 刘坤, 肖金生. 车用质子交换膜燃料电池堆阴极进气系统模拟及优化[J]. 北京汽车, 2007(3): 1-3. | 44 | TAN Y W, LIU K, XIAO J S. Simulation and optimization of vehicle proton exchange membrane fuel cell reactor cathode intake system[J]. Beijing Automotive Engineering, 2007(3): 1-3. | 45 | ZHONG D, LIN R, LIU D C, et al. Structure optimization of anode parallel flow field for local starvation of proton exchange membrane fuel cell[J]. Journal of Power Sources, 2018, 403: 1-10. | 46 | 王世学, 齐贺, 李桦. 一种新型进气方式对燃料电池水管理效果的影响[J]. 热科学与技术, 2013, 12(4): 354-359. | 46 | WANG S X, QI H, LI H. Influence of a new intake mode on fuel cell water management effect[J]. Journal of Thermal Science and Technology, 2013, 12(4): 354-359. | 47 | 陈士忠, 罗鑫, 夏忠贤, 等. 进气速度对交指HT-PEM燃料电池性能的影响[J]. 沈阳建筑大学学报(自然科学版), 2017, 33(3): 529-536. | 47 | CHEN S Z, LUO X, XIA Z X, et al. Influence of inlet velocity on the performance of act-pem fuel cell[J]. Journal of Shenyang Jianzhu University(Natural Science), 2017, 33(3): 529-536. | 48 | 刘永峰, 王娜. 进气温度对质子交换膜燃料电池性能影响的试验研究[J]. 北京建筑大学学报, 2016, 32(2): 46-50. | 48 | LIU Y F, WANG N. Experimental study on the influence of inlet temperature on the performance of proton exchange membrane fuel cell[J]. Journal of Beijing University of Civil Engineering and Architecture, 2016, 32(2): 46-50. | 49 | 林煌. 高温质子交换膜燃料电池堆性能的数值模拟研究[D]. 天津: 天津大学, 2014.LIN H. Numerical simulation of high temperature proton exchange membrane fuel cell reactor performance[D]. Tianjin: Tianjin University, 2014. | 50 | TABBI W, IJAODOLA O, KHATIB F N, et al. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell[J]. Science of the Total Environment, 2019, 688: 1016-1035. | 51 | ZHANG J L, TANG Y H, SONG C J, et al. PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures[J]. Electrochimica Acta, 2008, 53(16): 5315-5321. | 52 | SONG C J, CHUA C J, TANG Y H, et al. Voltage jump during polarization of a PEM fuel cell operated at low relative humidities[J]. International Journal of Hydrogen Energy, 2008, 33(11): 2802-2807. | 53 | JUNG S H, KIM S L, KIM M S, et al. Experimental study of gas humidification with injectors for automotive PEM fuel cell systems[J]. Journal of Power Sources, 2007, 170(2): 324-333. | 54 | AHMADITABA A H, AFSHARI E, ASGHARI S. An experimental study on the bubble humidification method of polymer electrolyte membrane fuel cells[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(12): 635-644. | 55 | 侯三英. 质子交换膜燃料电池高性能及自增湿膜电极的制备与研究[D]. 广州: 华南理工大学, 2017.HOU S Y. Preparation and research of high performance and self-humidifying membrane electrode for proton exchange membrane fuel cell [D]. Guangzhou : South China Uuniversity of Technology, 2017. | 56 | CHA D, JEON S W, YANG W, et al. Comparative performance evaluation of self-humidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions[J]. Energy, 2018, 150: 320-328. | 57 | 尧磊, 彭杰, 张剑波, 等. 质子交换膜燃料电池冷启动的数值模拟[J]. 化工进展, 2019, 38(9): 4029-4035. | 57 | YAO L, PENG J, ZHANG J B, et al. Numerical simulation of proton exchange membrane fuel cell cold start[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4029-4035. | 58 | 李友才. 车用质子交换膜燃料电池电堆保温仿真研究[J]. 电源技术, 2016, 40(3): 580-582. | 58 | LI Y C. Simulation study on thermal insulation of vehicle proton exchange membrane fuel cells in electric pile[J]. Chinese Journal of Power Sources, 2016, 40(3): 580-582. | 59 | 许澎, 张洁, 郭鑫, 等. 燃料电池电堆停机吹扫及低温冷启动性能的试验研究[J]. 同济大学学报(自然科学版), 2017, 45(s1): 126-131. | 59 | XU P, ZHANG J, GUO X, et al. Experimental study on shutdown purge and cold start performance of fuel cell reactor[J]. Journal of Tongji University (Natural Science), 2017, 45(s1): 126-131. | 60 | KNORR F, SANCHEZ D G, SCHIRMER J, et al. Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells[J]. Applied Energy, 2019, 238: 1-10. | 61 | LUO Y Q, JIA B, JIAO K, et al. Catalytic hydrogen–oxygen reaction in anode and cathode for cold start of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(32): 10293-10307. | 62 | LI L J, WANG S X, YUE L K, et al. Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode[J]. Applied Energy, 2019, 254: 113716. |
|