1 | HOSSAIN M M, SCOTT I M, BERRUTI F, et al. Optimizing pyrolysis reactor operating conditions to increase nicotine recovery from tobacco leaves[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 80-87. | 2 | ZHANG L H, XU C B, CHAMPAGNE P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management, 2010, 51(5): 969-982. | 3 | ZI W H, PENG J H, ZHANG X L, et al. Optimization of waste tobacco stem expansion by microwave radiation for biomass material using response surface methodology[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(4): 678-685. | 4 | AKALIN M K, SELHAN K. Pyrolysis of tabacco residue: Part 1. Thermal[J]. Bioresources, 2011, 6(2): 1520-1531. | 5 | AKALIN M. K, KARAGOZ S. Pyrolysis of tobacco residue. Part 2: catalytic[J]. Bioresources, 2011, 6(2): 1773-1805. | 6 | MITSUI K, DAVID F, DUMONT E, et al. LC fractionation followed by pyrolysis GC-MS for the in-depth study of aromatic compounds formed during tobacco combustion[J]. Journal of Analytical and Applied Pyrolysis, 2015, 116: 68-74. | 7 | YAN B C, ZHANG S, CHEN W B, et al. Pyrolysis of tobacco wastes for bio-oil with aromatic compounds[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 248-254. | 8 | GORTE R J. Ceria in catalysis: from automotive applications to the water-gas shift reaction[J]. AIChE Journal, 2010, 56(5): 1126-1135. | 9 | LEE S, SEO J, JUNG W C. Sintering-resistant Pt@CeO2 nanoparticles for high-temperature oxidation catalysis[J]. Nanoscale, 2016, 8(19): 10219-10228. | 10 | 杨涛, 曹蕃, 刘利军, 等. 掺杂 Ce/Zr对γ-Al2O3(110)表面的影响[J]. 燃烧科学与技术, 2017, 23(6): 542-546. | 10 | YANG Tao, CAO Fan, LIU Lijun, et al. Impact of Ce/Zr doping on γ-Al2O3(110) surface[J]. Journal of Combustion and Technology, 2017, 23(6): 542-546. | 11 | YU Q, LIU L G, DONG L H, et al. Effects of Ce/Zr ratio on the reducibility, adsorption and catalytic activity of CuO/CexZr1-xO2/γ-Al2O3 catalysts for NO reduction by CO[J]. Applied Catalysis B: Environmental, 2010, 96(3): 350-360. | 12 | WU W R, ZENG Z, LU P, et al. Simultaneous oxidation of Hg0 and NH3-SCR of NO by nanophase CexZryMnzO2 at low temperature: the interaction and mechanism[J]. Environmental Science and Pollution Research, 2018, 25(15): 14471-14485. | 13 | 孙超, 冀德坤, 易玉峰, 等. Zr、Cr改性CeO2/Al2O3催化剂CO2氧化乙苯脱氢反应研究[J]. 石油化工, 2018, 47(6): 523-528. | 13 | SUN Chao, JI Dekun, YI Yufeng, et al. Study of oxidative dehydrogenation of ethylbenzene with CO2 over Zr and Cr modified CeO2/Al2O3 catalysts[J]. Petrochemical Technology, 2018, 47(6): 523-528. | 14 | 何庆, 周顺, 张亚平, 等. 一种烟草快速工业分析方法: CN201510312256[P]. 2015-11-11. | 14 | HE Qing, ZHOU Shun, ZHANG Yaping, et al. A rapid industrial analysis method for tobacco: CN201510312256[P]. 2015-11-11. | 15 | 郑云武, 杨晓琴, 沈华杰, 等. 改性微-介孔催化剂的制备及其催化生物质热解制备芳烃[J]. 农业工程学报, 2018, 34(20): 240-249. | 15 | ZHENG Yunwu, YANG Xiaoqing, SHEN Huajie, et al. Preparation of hierarchical ZSM-5 catalyst and its application on pyrolysis of biomass to enhance aromatics products[J]. Chinese Society of Agricultural Engineering, 2018, 34(20): 240-249. | 16 | 李文斌, 郑云武, 李水荣, 等. 玉米芯热解催化转化制备呋喃类化合物工艺优化[J]. 农业工程学报, 2019, 35(17): 256-262. | 16 | LI Wenbin, ZHENG Yunwu, LI Shuirong, et al. Optimization of process for preparation of furan compounds by pyrolysis catalytic conversion of corncob[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 256-262. | 17 | ZHENG Y W, WANG F, YANG X Q, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 169-179. | 18 | SUNG Y J, SEO Y B. Thermogravimetric study on stem biomass of Nicotiana tabacum[J]. Thermochimica Acta, 2009, 486(1/2): 1-4. | 19 | 仝姗, 程谦伟, 刘昭明, 等. Al-Zr-CeO2固体酸催化剂的制备及其油脂环氧化性能[J]. 中国粮油学报, 2019, 34(4): 75-82. | 19 | TONG Shan, CHENG Qianwei, LIU Zhaoming, et al. Preparation of Al-Zr-CeO2 solid acid catalyst and oil epoxidation[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(4): 75-82. | 20 | YU Q, WU X X, YAO X J, et al. Mesoporous ceria–zirconia–alumina nanocomposite-supported copper as a superior catalyst for simultaneous catalytic elimination of NO-CO[J]. Catalysis Communications, 2011, 12(14): 1311-1317. | 21 | MORIKAWA A, SYZYKI T, KANAZAWA T, et al. A new concept in high performance ceria–zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 210-221. | 22 | ALBUQUERQUE E M, BORGES L E P, FRAGA M A, et al. Relationship between acid-base properties and the activity of ZrO2 catalysts for the cannizzaro reaction of pyruvaldehyde to lactic acid[J]. ChemCatChem, 2017, 9(14): 2675-2683. | 23 | 赵敏伟. Pd-CZ-Al2O3模型催化剂的动态储放氧与三效催化剂性能研究[D]. 天津: 天津大学, 2008. | 23 | ZHAO Minwei. Study of dynamic oxygen storage capacity and three-way catalytic activities over Pd-CZ-Al2O3model automobile catalyst[D]. Tianjing: Tanjing University, 2008. | 24 | FAN J, WENG D, WU X D, et al. Modification of CeO2-ZrO2 mixed oxides by coprecipitated/impregnated Sr: effect on the microstructure and oxygen storage capacity[J]. Journal of Catalysis, 2008, 258(1): 177-186. | 25 | KRISHNA K A, BUENO L A, MAKKEE M, et al. Potential rare-earth modified CeO2 catalysts for soot oxidation[J]. Topics in Catalysis, 2007, 42/43(1/2/3/4): 221-228. | 26 | GANGADHARAN A, SHEN M, SOOKNOI T, et al. Condensation reactions of propanal over CexZr1-xO2 mixed oxide catalysts[J]. Applied Catalysis A: General, 2010, 385(1/2): 80-91. | 27 | KAMIMURA Y, SATO S, TAKAHASHI R, et al. Synthesis of 3-pentanone from 1-propanol over CeO2–Fe2O3 catalysts[J]. Applied Catalysis A: General, 2003, 252(2): 399-410. | 28 | 廖艳芬. 纤维素热裂解机理试验研究[D]. 杭州: 浙江大学, 2003. | 28 | LIAO Yanfen. Mechanism study of cellulose pyrolysis[D]. Hangzhou: Zhejiang University, 2003. | 29 | CHENG Y T, JAE J H, SHI J, et al. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angewandte Chemie, 2012, 51(6): 1387-1390. | 30 | GOU J S, WANG Z P, LI C, et al. The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan[J]. Green Chemistry, 2017, 19(15): 3549-3557. | 31 | CHENG Y T, HUBER G W. Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5[J]. Green Chemistry, 2012, 14(11): 3114-3125. | 32 | SNELL R W, SHANKS B H. Insights into the ceria-catalyzed ketonization reaction for biofuels applications[J]. ACS Catalysis, 2013, 3(4): 783-789. | 33 | WANG W Y, WU K, LIU P L, et al. Hydrodeoxygenation of p–cresol over Pt/Al2O3 catalyst promoted by ZrO2, CeO2 and CeO2-ZrO2[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7598-7603. | 34 | WANG J, XU C, ZHONG Z P, et al. Catalytic conversion of bamboo sawdust over ZrO2-CeO2/γ-Al2O3 to produce ketonic hydrocarbon precursors and furans[J]. ACS Sustainable Chemistry & Engineeering, 2018, 6: 13797-13806. | 35 | MOMAYEZ F, TOWFIGHI D J, TEIMOURI SENDESI S M. Synthesis of zirconium and cerium over HZSM-5 catalysts for light olefins production from naphtha[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 135-140. | 36 | BAE Y S, KIM M B, LEE H J, et al. Adsorptive denitrogenation of light gas oil by silica-zirconia cogel[J]. American Institute of Chemical Engineers, 2006, 52(2): 510-521. | 37 | HAN X, LIN H, ZHENG Y. Adsorptive denitrogenation and desulfurization of diesel using activated carbons oxidized by (NH4)2S2O8 under mild conditions[J]. The Canadian Journal of Chemical Engineering, 2014, 93(3): 538-548. | 38 | ZHANG H Y, LUO M M, XIAO R, et al. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5[J]. Bioresource Technology, 2014, 155(2): 57-62. |
|