化工进展 ›› 2020, Vol. 39 ›› Issue (1): 320-328.DOI: 10.16085/j.issn.1000-6613.2019-0588
唐涛涛1(),李江1,2(),杨钊1,向福亮1,王跃虎1,李彦澄1
收稿日期:
2019-04-14
出版日期:
2020-01-05
发布日期:
2020-01-14
通讯作者:
李江
作者简介:
唐涛涛(1994—),男,硕士研究生,研究方向为有机污染控制。E-mail:基金资助:
Taotao TANG1(),Jiang LI1,2(),Zhao YANG1,Fuliang XIANG1,Yuehu WANG1,Yancheng LI1
Received:
2019-04-14
Online:
2020-01-05
Published:
2020-01-14
Contact:
Jiang LI
摘要:
污泥厌氧消化处理技术因其具有无害化、资源化和稳定化的特征备受关注。污泥厌氧消化涉及水解发酵、产氢产乙酸和产甲烷多种微生物,并发挥不同的功能。本文介绍了污泥厌氧消化体系中常见的细菌(门水平)和古菌(属水平)群落,如拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、绿弯菌门(Chloroflexi)、螺旋体门(Spirochaetes)(细菌)和甲烷杆菌属(Methanobacterium)、甲烷八叠球菌属(Methanosarcina)、甲烷短杆菌属(Methanobrevibacter)、鬃毛甲烷菌属(Methanosaeta)(古菌)等。同时也综述了影响厌氧体系中的微生物群落结构的因素,如pH、营养物质、温度、氨氮(NH4+-N)及有毒有害物质等。最后展望了稳定同位素标记、宏基因组学和蛋白质组学等分子生物技术在探查微生物功能方面的应用前景,为进一步分析厌氧体系中未识别的功能微生物提供技术支撑。
中图分类号:
唐涛涛,李江,杨钊,向福亮,王跃虎,李彦澄. 污泥厌氧消化功能微生物群落结构的研究进展[J]. 化工进展, 2020, 39(1): 320-328.
Taotao TANG,Jiang LI,Zhao YANG,Fuliang XIANG,Yuehu WANG,Yancheng LI. Research progress in on microbial community structure of anaerobic digestion of sludge[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 320-328.
1 | 杭世珺, 傅涛, 戴晓虎, 等. 技术路线没有走通, 产业没有融通, 政策缺乏贯通污泥出路困境如何破?[J]. 环境经济, 2019(2): 34-39. |
HANG Shijun, FU Tao, DAI Xiaohu, et al. No formed technical routes, no integrated industry, no throughout policy, and how to break the dilemma of sludge treatment[J]. Environmental Economy,2019(2): 34-39. | |
60 | KRONINGER L, BERGER S, WELTE C, et al. Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccusluminyensis[J]. FEBS J., 2016, 283(3): 472-483. |
61 | LIU C, WANG W, ANWAR N, et al. Effect of organic loading rate on anaerobic digestion of food waste under mesophilic and thermophilic conditions[J]. Energy Fuels, 2017, 31(3): 2976-2984. |
2 | OLADEIO J, SHI K, LUO X, et al. A review of sludge-to-energy recovery methods[J]. Energies, 2018, 12: 60. |
3 | CAO Y, PAWLOWSKI A. Sewage sludge to energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment[J]. Renewable Sustainable Energy Rev.,2012, 16: 1657–1665. |
62 | BAYR S, RANTANEN M, KAPARAIU P, et al. Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes[J]. Bioresour. Technol., 2012, 104(1): 28-36. |
63 | GUO X, WANG C, SUN F, et al. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings[J]. Bioresour. Technol., 2014, 152: 420-428. |
4 | TYAGI V K, LO S L. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review[J]. Reviews in Environmental Science and Bio/Technology, 2011,10(3): 215-242. |
5 | KIM S, CHOI K, KIM J O, et al. Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies[J]. Biodegradation, 2013,24(6):753-764. |
64 | GUO C L, YANG Z H, HUANG J, et al. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste[J]. Chemosphere, 2014, 105(3): 146-151. |
65 | WU B, WANG X, DENG Y Y, et al. Adaption of microbial community during the start-up stage of a thermophilic anaerobic digester treating food waste[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(10): 1-8. |
6 | XU S, SELVAM A, KARTHIKEYAN O P, et al. Responses of microbial community and acidogenic intermediates to different water regimes in a hybrid solid anaerobic digestion system treating food waste[J]. Bioresour. Technol., 2014, 168: 49-58 |
7 | 林海龙,李巧燕,李永峰,等. 厌氧环境微生物学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014. |
66 | DEMIREL B, SCHERER P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review[J]. Rev. Environ Sci. Biotechnol., 2008, 7(2): 173-190. |
67 | TANG T T, LI J, YANG Z, et al. Effect of straw on microbial community composition and degradation efficiency of polycyclic aromatic hydrocarbons in sludge digester[J]. International Journal of Environmental Science and Technology, 2019,16(12):7973-7986. |
68 | 李新. 纤维素对污泥中多环芳烃厌氧生物降解的影响研究[D]. 贵阳: 贵州大学, 2017. |
LI Xing. Effect of cellulose on anaerobic biodegradation of polycyclic aromatic hydrocarbons in sewage sludge[D]. Guiyang: Guizhou University, 2017. | |
69 | MATA-ALVAREZ J, DOSTA J, ROMERO-GUIZA M S, et al. A critical review on anaerobic co-digestion achievements between 2010 and 2013[J]. Renew Sust. Energ. Rev., 2014, 36: 412-427. |
70 | LIU W T, CHAN O C, FANG H H P. Microbial community dynamics during start-up of acidogenic anaerobic reactors[J]. Water Res., 2002,36(13): 3203-3210. |
71 | ZHANG T, LIU Y, FANG H H P. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process[J]. Biotechnol. Bioeng., 2005, 92(2): 173-182. |
72 | ROMSAIYUD A, SONGKASIRI W, NOPHARATANA A, et al. Combination effect of pH and acetate on enzymatic cellulose hydrolysis[J]. J. Environ. Sci., 2009, 21(7): 965-970. |
73 | RUSSELL J B, WILSON D B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?[J]. J. Dairy Sci., 1996, 79(8): 1503-1509. |
74 | CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: a review[J]. Bioresour. Technology, 2008, 99(10): 4044-4064. |
75 | CHANDRA R, TAKEUCHI H, HASEGAWA T. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production[J]. Renew Sust. Energ. Rev., 2012, 16(3): 1462-1476. |
76 | 陈泓,王雯,严湖,等.氨氮对有机废弃物厌氧消化的影响及调控策略[J].环境科学与技术, 2016, 39(9): 88-95. |
CHEN Hong, WANG Wen, YAN Hu, et al. Ammonia inhibition on anaerobic digestion and control strategy: a review[J]. Environmental Science & Technology, 2016, 39(9): 88-95. | |
77 | MCCARTY P L, MCKINNEY R E. Salt toxicity in anaerobic digestion[J]. Water Pollution Control Federation,1961, 33(4): 399-415. |
78 | GALLERT C, BAUER S, WINTER J. Effect of ammonia on the anaerobic digestion of protein by a mesophilic and thermophilic biowaste population[J]. Applied Microbiology and Biotechnology, 1998, 50(4): 495-501. |
79 | FERNANDES T V, KEESMAN K J, ZEEMAN G, et al. Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin[J]. Biomass and Bioenergy, 2012, 47: 316-323. |
80 | MASSE D I, RAJAGOPAL R, SINGH G. Technical and operation feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste[J]. Applied Energy, 2014, 120: 49-55. |
81 | SUNG S, LIU T. Ammonia inhibition on thermophilic anaerobic digestion[J]. Chemosphere, 2003, 53: 43-52. |
82 | HOBSON P N, SHAW B G. Inhibition of methane production by Methanobacterium formicicum[J]. Water Research, 1976, 10: 849-852. |
83 | 孟晓山,张玉秀,隋倩雯,等.氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. |
MENG Xiaoshang, ZHANG Yuxiu, Qianwen SUI, et al. Effects of ammonia concentration on anaerobic digestion of swine manure and community structure of methanogens[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2346-2356. | |
84 | MENG L, LI X, WANG K, et al. Influence of the amoxicillin concentration on organics removal and microbial community structure in an anaerobic EGSB reactor treating with antibiotic wastewater[J]. Chem. Eng. J., 2015, 274: 94-101. |
85 | ZHI Suli LI Qiang, YANG Fengxia, et al. How methane yield, crucial parameters and microbial communities respond to the stimulating effect of antibiotics during high solid anaerobic digestion[J]. Bioresour. Technology, 2019, 283: 286-296. |
86 | 杨浩, 邓良伟, 刘刈, 等. 搅拌对厌氧消化产沼气的影响综述[J]. 中国沼气, 2010, 28(4): 3-9. |
YANG Hao, DENG Liangwei, LIU Yi, et al. A summary of the influence of mixing on anaerobic digestion producing biogas[J]. Journal of China Biogas, 2010, 28(4): 3-9. | |
87 | 李志华,张亚婷.搅拌对污泥厌氧消化过程中污泥形态及微生物活性的影响[J]. 环境污染与防治, 2012, 34(6): 5-7. |
LI Zhihua, ZHANG Yating. Effect of stirring on structure of anaerobic flocs and space distribution of microbial activity[J]. Environmental Pollution & Control, 2012, 34(6): 5-7. | |
88 | 段小睿,李杨,苑宏英. 搅拌速率对剩余污泥厌氧水解酸化的影响研究[J]. 工业用水与废水, 2011, 42(2): 87-89. |
DUAN Xiaorui,LI Yang,YUAN Hongying. Effect of stirring speed on anaerobic hydrolytic acidification of excess sludge[J]. Industrial Water & Wastewater,2011, 42(2): 87-89. | |
89 | CUBAS S A, FORESTI E, RODRIGUES J A D, et al. Influence of liquid phase mass transfer on the performance of a stirred anaerobic sequencing batch reactor containing immobilized biomass[J]. Biochemical Engineering Journal, 2004, 17(2): 99-105. |
7 | LIN Hailong, LI Qiaoyan, LI Yongfeng, et al. Anaerobic environmental microbiology[M]. Harbin: Harbin Institute of Technology Press, 2014. |
8 | WIRTH R, KOVACS E, MAROTI G, et al. Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing[J]. Biotechnology for Biofuels, 2012, 5(1): 41. |
90 | SMITH L C, ELLIOT D J, JAMES A. Mixing in up flow anaerobic filters and its influence on performance and scale-up[J]. Water Research, 1996, 30(12): 3061-3073. |
91 | HIRAISHI A, IWASAKI M, SHINJO H. Terminal restriction pattern analysis of 16S rRNA genes for the characterization of bacterial communities of activated sludge[J]. J. Biosci. Bioeng., 2000, 90(2): 148-156. |
92 | 史青,柏耀辉,李宗逊,等.应用T-RFLP技术分析滇池污染水体的细菌群落[J]. 环境科学, 2011, 32(6): 1786-1792. |
SHI Qing, BO Yaohui, LI Zongxun, et al. Analysis of bacterial community in the polluted water of Dianchi Lake by using T-RFLP technique[J]. Environmental Science, 2011, 32(6): 1786-1792. | |
93 | 孙庆华,柏耀辉,赵翠,等. DGGE、T-RF LP、LH-PC R对两种活性污泥的微生物种群多样性分析的比较[J]. 环境工程学报, 2009, 3(8): 1365-1370. |
Qinghua SHUN, BO Yaohui, ZHAO Cui, et al. Comparison of DGGE, T-RFLP and LH-PCR in the analysis of microbial community diversity for two kinds of activated sludges[J]. Chinese Journal of Environmental Engineering, 2009, 3(8): 1365-1370. | |
94 | 柏耀辉,孙庆华,温东辉,等.分子生态技术在微生物硝化及反硝化研究中的应用[J]. 北京大学学报(自然科学版), 2011, 47(2): 378-384. |
BO Yaohui, Qinghua SHUN, WEN Donghui, et al. Application of molecular ecological techniques on the study of microbial nitrification and denitrification[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(2): 378-384. | |
95 | 任南琪, 赵阳国, 高崇洋,等.TRFLP在微生物群落结构与动态分析中的应用[J]. 哈尔滨工业大学学报, 2007, 39(4): 552-556. |
REN Nanqi, ZHAO Yangguo, GAO Chongyang, et al. Terminal restriction fragment length polymorphism: a powerful technique for characterizing microbial community structure and dynamics[J]. Journal of Harbin Institute of Technology, 2007, 39(4): 552-556. | |
96 | TYSON G W, CHAPMAN J, HUGENHOLTZ P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment[J]. Nature, 2004, 428: 37-43. |
97 | SCHUSTER S C. Next-generation sequencing transforms today’s biology[J]. Nat. Methods, 2008, 5(1): 16-18. |
98 | LU L, JIA Z J. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils[J]. Environmental Microbiology,2013,15(6): 1795-1809. |
99 | KIM S J, PARK S J, CHA I T, et al. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis[J]. Environmental Microbiology, 2014, 16(1): 189-204. |
100 | TRINGE S G, HUGENHOLTZ P. A renaissance for the pioneering 16S rRNA gene[J]. Current Opinion in Microbiology, 2008, 11(5): 442-446. |
101 | NILSSON R H, RYBERGg M, ABARENKOV K, et al. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies[J]. FEMS Microbiology Letters, 2009, 296(1): 97-101. |
9 | ROS M, FRANKE-WHITTLE I H, MORALES A B, et al. Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste[J]. Bioresour. Technol., 2013, 136: 1-7 |
10 | TURKER G, AYDIN S, AKYOL C, et al. Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure[J]. Applied Microbiology & Biotechnology, 2016, 100(14): 6469-6479. |
102 | MITRA R D, CHURCH G M. In situ localized amplification and contact replication of many individual DNA molecules[J]. Nucleic Acids Res., 1999, 27(24): 34-39. |
103 | MITRA R D, SHENDURE J, OLEJNIK J, et al. Fluorescent in situ sequencing on polymerase colonies[J]. Anal. Biochem., 2003, 320(1): 55-65. |
104 | SHENDURE J, PORRECA G J, REPPAS N B, et al. Accurate multiplex polony sequencing of an evolved bacterial genome[J]. Science, 2005, 309: 1728-1732. |
105 | 任红燕.油藏原位与实验室模拟系统中的微生物分子生态学研究[D]. 上海: 上海交通大学, 2011. |
REN Hongyan. Molecular microbial ecology of oil reservoir and simulated oil degrading system[D]. Shanghai: Shanghai Jiao Tong University, 2011. | |
11 | AHRING B K. Perspectives for anaerobic digestion[J]. Adv. Biochem. Eng. Biotechnol., 2003, 81: 1-30. |
12 | WANG P, WANG H T, QIU Y Q, et al. Microbial characteristics in anaerobic digestion process of food waste for methane production-a review[J]. Bioresour. Technol., 2017, 248: 29-36. |
13 | RIVIERE D, DESVIGNES V, PELLETIER E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. The ISME Journal, 2009, 3(6): 700-714. |
14 | NELSON M C, MORRISON M, YU Z. A meta-analysis of the microbial diversity observed in anaerobic digesters[J]. Bioresour. Technol., 2011,102(4): 3730-3739. |
15 | LIM J W, CHEN C L, HO I J, et al. Study of microbial community and biodegradation efficiency for single-and two-phase anaerobic co-digestion of brown water and food waste[J]. Bioresour. Technol., 2013, 147: 193-201. |
16 | ZHANG D D, LI J, GUO P, et al. Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions[J]. Bioresour. Technol., 2011, 102: 4703-4711. |
17 | BURNS A S, PUGH C W, SEGID Y T, et al. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage[J]. Biodegradation, 2012, 23(3): 415-429. |
18 | 胡纪萃. 废水厌氧生物处理理论与技术[M]. 北京:中国建筑工业出版社, 2003. |
HU Jicui. Theory and technology of anaerobic biological treatment of wastewater[M]. Beijing: China Architecture & Building Press, 2003. | |
19 | FLINT H J, BAYER E A, RINCON M T, et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis[J]. Nature Reviews Microbiology, 2008, 6(2):121-131. |
20 | UEKI A, AKASAKA H, SUZUKI D, et al. Paludibacterpropionicigenes gen. nov. sp. nov. a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan[J]. Int. J. Syst. Evol. Microbiol., 2006, 56(1):39-44. |
21 | HATAMOTO M, KANESHIGE M, NAKAMURA A, et al. Bacteroidesluti sp. nov., ananaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge[J]. Int. J. Syst. Evol. Microbiol., 2014, 64: 1770-1774. |
22 | UTHICKE S, GUIRE K MC. Bacterial communities in Great Barrier Reef calcareous sediments: contrasting 16S rDNA libraries from nearshore and outer shelf reefs[J]. Estuarine, Coastal and Shelf Science, 2007, 72(1): 188-200. |
23 | ARIESYADY H D, ITO T, OKABE S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J]. Water Res., 2007, 41(7): 1554-1568. |
24 | LUO J Y, CHEN Y G, FENG L Y. Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated wludge by altering activity and viability of acetogen[J]. Environ. Sci. Technol., 2016, 50: 6921-6929. |
25 | RINCON B, PORTILLO M C, GONZALEZ J M. Microbial community dynamics in the two-stage anaerobic digestion process of two-phase olive mill residue[J]. Int. J. Environ. Sci. Technol., 2013, 10(4): 635-644. |
26 | CHEON J, HIDAKA T, MORI S, et al. Applicability of random cloning method to analyze microbial community in full-scale anaerobic digesters[J]. J. Biosci. Bioeng., 2008, 106(2): 134-140. |
27 | BERTIN L, BETTINI C, ZANAROLI G, et al. Acclimation of an anaerobic consortium capable of effective biomethanization of mechanically-sorted organic fraction of municipal solid waste through a semi-continuous enrichment procedure[J]. J. Chem. Technol. Biotechnol., 2012, 87(9): 1312-1319. |
28 | ZHAO X, LIU J, LIU J, et al. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass[J]. Bioresour. Technol., 2017, 241: 349-359. |
29 | GARCIA-PENA E I, PARAMESWARAN P, KANG D W, et al. AD and co-digestion process of vegetable and fruit residues: process and microbial ecology[J]. Bioresour. Technol., 2011, 102(20): 9447-9455. |
30 | LIM J W, GE T, TONG Y W. Monitoring of microbial communities in anaerobic digestion sludge for biogas optimization[J]. Waste Manage.,2018, 71: 334–341. |
31 | ZHANG Y H P,LYND L R. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation[J]. Proceeding of the National Academy of Sciences of the United States of America, 2005,102(20): 7321-7325. |
32 | ZHANG B, ZHAO H, YU H, et al. Evaluation of biogas production performance and archaeal microbial dynamics of corn straw during anaerobic co-digestion with cattle manure liquid[J]. J. Microbiol. Biotechnol., 2016, 26(4): 739-747. |
33 | KIM S, BAE J, CHOI O, et al. A pilot scale two-stage anaerobic digester treating food waste leachate (FWL): performance and microbial structure analysis using pyrosequencing[J]. Process Biochem., 2014, 49(2): 301-308. |
34 | KATO S, HARUTA S, CUI Z J, et al. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community[J]. Int. J. Syst. Evol. Microbiol., 2004, 54(6): 2043-2047. |
35 | ITO T, YOSHIGUCHI K, ARIESYADY H D, et al. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge[J]. ISME J., 2011, 5(12): 1844-1856. |
36 | QIN X C, JI M M, WU X G, et al. Response of treatment performance and microbial community structure to the temporary suspension of an industrial anaerobic bioreactor[J]. Science of the Total Environment, 2019, 646: 229-237. |
37 | 王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016, 32(2): 14-20. |
WANG Guanghua, LIU Junjie, YU Zhenghua, et al. Research progress of Acidobacteria ecology in soils[J]. Biotechnology Bulletin, 2016, 32(2): 14-20. | |
38 | FERNANDEZ A, HUANG S, SESTON S, et al. How stable is stable? Function versus community composition[J]. Appl. Environ. Microbiol., 1999, 65(8): 3697-3704. |
39 | WANG L, ZHENG B, LEI K. Diversity and distribution of bacterial community in the coastal sediments of Bohai Bay, China[J]. Acta Oceanologica Sinica, 2015, 34(10): 122-131. |
40 | IMFELD G, ARAGONES C E, FETZER I, et al. Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1, 2-dichloroethene-contaminated groundwater[J]. FEMS Microbiology Ecology, 2010, 72(1): 74-88. |
41 | BAEK G, KIM J, LEE C. Influence of ferric oxyhydroxide addition on biomethanation of waste activated sludge in a continuous reactor[J]. Bioresour. Technol., 2014, 166: 596-601. |
42 | PODOSOKORSKAYA O A, KADNIKOV V V, GAVRILOY S N, et al. Characterization of Melioribacterroseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae[J]. Environmental Microbiology, 2013, 15(6): 1759-1771. |
43 | 方晓瑜,李家宝,芮俊鹏,等.产甲烷生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21(1): 1-9. |
FANG Xiaoyu, LI Jiabao, RUI Junpeng, et al. Research progress in biochemical pathways of methanogenesis[J]. Chinese Journal of Applied and Environmental Biology., 2015,21(1):1-9. | |
44 | SHIN S G, LEE S, LEE C, et al. Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge[J]. Bioresour. Technol., 2010, 101(24): 9461-9470. |
45 | SOUSA D Z, SMIDT H, ALVES M M, et al. Syntrophomonas zehnderi sp.nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacteriumformicicum[J]. Int. J. Syst. Evol. Microbiol., 2007, 57(3): 609-615. |
46 | IMACHI H, SAKAI S, OHASHI A, et al. Pelotomaculumpropionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium[J]. Int. J. Syst. Evol. Microbiol., 2007, 57(7): 1487-1492. |
47 | NIELSON H, UELLENDAHL H, AHRING B. Regulation and optimization of the biogas process: propionate as a key parameter[J]. Biomass Bioenergy, 2007, 31(11-12): 820-830. |
48 | GARCIA J L, PATEL B K C, OLLIVIER B. Taxonomic, phylogenetic and ecological diversity of methanogenic archaea[J]. Anaerobe, 2000, 6(4): 205-226. |
49 | SONG Z L, ZHANG C. Anaerobic digestion of pretreated wheat straw with cattle manure and analysis of the microbial community[J]. Bioresour. Technol., 2015, 186: 128-135. |
50 | VRIEZE J D, HENNEBEL T, BOON N, et al. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation[J]. Bioresour. Technol., 2012, 112(5): 1-9. |
51 | CONKLIN A., STENSEL H D, FERGUSON J. The growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion[J]. Water. Environ. Res., 2006, 78(5): 486-496. |
52 | KOBAYASHI T, YASUDA D, LI Y Y, et al. Characterization of start-up performance and archaeal community shifts during anaerobic self-degradation of waste-activated sludge[J]. Bioresour. Technol., 2009, 100(21): 4981-4988. |
53 | IINO T, MORI K, SUZUKI K. Methanospirillum lacunae sp. nov., a methane-producingarchaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei[J]. Int. J. Syst. Evol. Microbiol., 2010, 60(11): 2563-2566. |
54 | ZHOU L, LIU X, DONG X. Methanospirillum psychrodurum sp. nov., isolated from wetland soil[J]. Int. J. Syst. Evol. Microbiol., 2014, 64(2): 638-641. |
55 | GONZALEZ-FERNANDEZ C, SIALVE B, et al. Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs[J]. Bioresour. Technol., 2015, 198: 896-906. |
56 | YIN Q, YANG S, WANG Z, et al. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferro ferric oxide[J]. Chem. Eng. J., 2018, 333: 216-225. |
57 | CERSOSIMO L M, BAINBRIDGE M L, KRAFT J, et al. Influence of periparturient and postpartum diets on rumen methanogen communities in three breeds of primiparous dairy cows[J]. BMC Microbiol., 2016,16(1):78. |
58 | DIEHO K, BOGERT B V D, HENDERSON G, et al. Changes in rumen microbiota composition and in situ degradation kinetics during the dry period and early lactation as affected by rate of increase of concentrate allowance[J]. J. Dairy Sci., 2017, 100(4): 2695-2710. |
59 | BECKER K W, ELLING F J, YOSHINAGA M Y, et al. Unusual butane-and pentanetriol-based tetraether lipids in Methanomassiliicoccusluminyensis, a representative of the seventh order of methanogens[J]. Appl. Environ. Microbiol., 2016, 82(15): 4505-4516. |
[1] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[2] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[3] | 王林, 辛梅华, 李明春, 陈琦, 毛扬帆. 季铵化/磺化壳聚糖的制备及其抗生物被膜活性[J]. 化工进展, 2023, 42(5): 2577-2585. |
[4] | 孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
[5] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[6] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[7] | 邵明帅, 张超, 吴华南, 王宁, 陈钦冬, 徐期勇. 水热耦合厌氧消化技术处理餐厨垃圾沼渣沼液及工艺能耗分析[J]. 化工进展, 2022, 41(5): 2733-2742. |
[8] | 郑小梅, 林茹晶, 周文静, 徐泠, 张洪宁, 张昕颖, 谢丽. 微生物电解池辅助CO2甲烷化阴极材料的研究进展[J]. 化工进展, 2022, 41(5): 2476-2486. |
[9] | 阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
[10] | 闫雪倩, 裴向军, 杜杰, 米晓慧, 白琳嵚, 马蕊, 张明宽, 钱进. Bi2O2CO3/Fe3O4磁性复合物在环境污染治理领域中的应用[J]. 化工进展, 2021, 40(6): 3515-3525. |
[11] | 陈郑, 赵秀梅, 穆廷桢, 杨茂华, 苗得露, 赵胥浩, 张建, 邢建民. 天然气生物脱硫技术研究进展[J]. 化工进展, 2021, 40(5): 2471-2483. |
[12] | 王亭亭, 赵智强, 张耀斌. 碱预处理耦合零价铁强化含油污泥厌氧消化[J]. 化工进展, 2021, 40(1): 534-541. |
[13] | 邹联沛, 宋琳, 李小伟, 万雨岚, 李曼, 刘建勇, 欧阳创, 奚慧, 钱光人, 戴晓虎. 湿垃圾组分对厌氧消化抑制作用的研究进展[J]. 化工进展, 2020, 39(S2): 362-371. |
[14] | 赵鑫, 熊健力, 任叶琳, 杨家鑫, 李伟, 韩雪容. 细菌纤维素合成与鉴定研究综述[J]. 化工进展, 2020, 39(S2): 262-268. |
[15] | 傅国志, 郭文阳, 马宗虎, 刘蔚, 李博凯, 孙子滟, 王祯欣, 李叶青. 秸秆与猪粪混合高固厌氧消化产气性能及关键微生物分析[J]. 化工进展, 2020, 39(8): 3386-3394. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |