化工进展 ›› 2020, Vol. 39 ›› Issue (4): 1308-1320.DOI: 10.16085/j.issn.1000-6613.2019-1093
苗琪1,2(),张叶龙1,2,贾旭1,金翼3,谈玲华1,2(),丁玉龙1,3,4()
收稿日期:
2019-07-09
出版日期:
2020-04-05
发布日期:
2020-04-28
通讯作者:
谈玲华,丁玉龙
作者简介:
苗琪(1996—),女,硕士研究生,研究方向为化学吸附储热技术。E-mail: 基金资助:
Qi MIAO1,2(),Yelong ZHANG1,2,Xu JIA1,Yi JIN3,Linghua TAN1,2(),Yulong DING1,3,4()
Received:
2019-07-09
Online:
2020-04-05
Published:
2020-04-28
Contact:
Linghua TAN,Yulong DING
摘要:
化学吸附储热技术近年来在太阳能利用和中低温余热领域得到了广泛关注,与传统的显热储热和相变储热技术相比具有储热密度高、储热损失小、可实现冷热双储等优点,然而其传质传热问题和液解问题导致的吸附性能和循环稳定性能的降低限制了其规模化应用。本文综述了利用矿物基多孔结构材料对化学吸附材料进行封装的方法以解决上述问题,总结了近年来石墨、蛭石等不同矿物基化学吸附储热材料的特点及其在化学吸附系统中的应用,主要介绍了矿物基化学吸附材料的两种体系(无机盐-水体系和氯盐-氨体系)的传质传热、化学吸附热等性能,并进一步指出了矿物基化学吸附储热技术未来的发展趋势,提出开发新型矿物基复合材料和优化化学吸附系统是未来的研究热点。
中图分类号:
苗琪,张叶龙,贾旭,金翼,谈玲华,丁玉龙. 矿物基化学吸附储热技术的研究进展[J]. 化工进展, 2020, 39(4): 1308-1320.
Qi MIAO,Yelong ZHANG,Xu JIA,Yi JIN,Linghua TAN,Yulong DING. Research progress of mineral-based chemical adsorption heatstorage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1308-1320.
1 | COURBON E, D’ANS P, PERMYAKOVA A, et al. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied Energy, 2017, 190: 1184-1194. |
2 | BAUER T, PFLEGER N, BREIDENBACH N, et al. Material aspects of solar salt for sensible heat storage[J]. Applied Energy, 2013, 111: 1114-1119. |
3 | 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602-1610. |
WANG X, CHEN H S, XU Y J, et al. Advances and prospects in thermal energy storage: a critical review[J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. | |
4 | 孟令然, 郭立江, 李晓禹, 等. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4): 623-632. |
MENG L R, GUO L J, LI X Y, et al. Salt hydrate based phase change materials for thermal energy storage—a review[J]. Energy Storage Science and Technology, 2017, 6(4): 623-632. | |
5 | 冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(5): 1058-1075. |
LENG G H, CAO H, PENG H, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075. | |
6 | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion, 2013, 39(5): 489-514. |
7 | KRESE G, KOZELJ R, BUTALA V, et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings[J]. Energy Buildings, 2018, 164: 239-253. |
8 | LEVITSKIJ E A, ARISTOV Y I, TOKAREV M M, et al. Chemical heat accumulators: a new approach to accumulating low potential heat[J]. Solar Energy Materials and Solar Cells, 1996, 44: 219-235. |
9 | 彭同江. 我国矿物材料的研究现状与发展趋势[J]. 中国矿业, 2005, 1: 21-24. |
PENG T J. Present situation and development of mineral materials in China[J]. China Mining Magazine, 2005, 1: 21-24. | |
10 | 刘洪波. 天然石墨与人造石墨刍议[J]. 高科技与产业化, 2014, 2: 44-49. |
LIU H B. Discussion on natural graphite and artificial graphite[J]. High-Technology and Industrialization, 2014, 2: 44-49. | |
11 | FUJIOKA K, SUZUKI H. Thermophysical properties and reaction rate of composite reactant of calcium chloride and expanded graphite[J]. Applied Thermal Engineering, 2013, 50(2): 1627-1632. |
12 | M-M DRUSKE, FOPAH-LELE A, KORHAMMER K, et al. Developed materials for thermal energy storage: synthesis and characterization[J]. Energy Procedia, 2014, 61: 96-99. |
13 | KIM S T, RYU J, KATO Y. The optimization of mixing ratio of expanded graphite mixed chemical heat storage material for magnesium oxide/water chemical heat pump[J]. Applied Thermal Engineering, 2014, 66(1/2): 274-281. |
14 | KORHAMMER K, M-M DRUSKE, FOPAH-LELE A, et al. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage[J]. Applied Energy, 2016, 162: 1462-1472. |
15 | GAEINI M, ROUWS A L, SALARI J W O, et al. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage[J]. Applied Energy, 2018, 212: 1165-1177. |
16 | LAHMIDI H, MAURAN S, GOETZ V. Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems[J]. Solar Energy, 2006, 80(7): 883-893. |
17 | MAURAN S, LAHMIDI H, GOETZ V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60kWh by a solid/gas reaction[J]. Solar Energy, 2008, 82(7): 623-636. |
18 | CAMMARATA A, VERDA V, SCIACOVELLI A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: formulation, fabrication and performance investigation[J]. Energy Conversion Management, 2018, 166: 233-240. |
19 | ZHAO Y J, WANG R Z, ZHANG Y N, et al. Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat[J]. Energy, 2016, 115: 129-139. |
20 | YU N, WANG R, LU Z, et al. Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2015, 84: 660-670. |
21 | HAN J H, K-H LEE, KIM H. Effective thermal conductivity of graphite-metallic salt complex for chemical heat pumps[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 481-488. |
22 | WANG K, WU J Y, WANG R Z, et al. Effective thermal conductivity of expanded graphite-CaCl2 composite adsorbent for chemical adsorption chillers[J]. Energy Conversion Management, 2006, 47(13/14): 1902-1912. |
23 | LI T X, WANG R Z, WANG L W, et al. Study on the heat transfer and sorption characteristics of a consolidated composite sorbent for solar-powered thermochemical cooling systems[J]. Solar Energy, 2009, 83(9): 1742-1755. |
24 | OLIVEIRA R G, WANG R Z, KIPLAGAT J K, et al. Novel composite sorbent for resorption systems and for chemisorption air conditioners driven by low generation temperature[J]. Renewable Energy, 2009, 34(12): 2757-2764. |
25 | KIPLAGAT J K, WANG R Z, OLIVEIRA R G, et al. Lithium chloride-expanded graphite composite sorbent for solar powered ice maker[J]. Solar Energy, 2010, 84(9): 1587-1594. |
26 | YAN T, WANG R Z, LI T X. Experimental investigation on thermochemical heat storage using manganese chloride/ammonia[J]. Energy, 2018, 143: 562-574. |
27 | WU S, LI T X, WANG R Z. Experimental identification and thermodynamic analysis of ammonia sorption equilibrium characteristics on halide salts[J]. Energy, 2018, 161: 955-962. |
28 | TANG K, LU Y, JIANG L, et al. Investigation of thermal characteristics of strontium chloride composite sorbent for sorption refrigeration[J]. Thermal Science and Engineering Progress, 2019, 10: 179-185. |
29 | KLEIN H. Heat transfer characteristics of expanded graphite matrices in metal hydride beds[J]. International Journal of Hydrogen Energy, 2004, 29(14): 1503-1511. |
30 | SAR A, KARAIPEKLI A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27(8/9): 1271-1277. |
31 | WANG L, METCALF S, CRITOPH R, et al. Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid[J]. Carbon, 2011, 49(14): 4812-4819. |
32 | DUMAN O, TUNC S. Electrokinetic properties of vermiculite and expanded vermiculite: effects of pH, clay concentration and mono- and multivalent electrolytes[J]. Separation Science and Technology, 2008, 43(14): 3755-3776. |
33 | 李军, 邱瑾, 龙英才. CXN 天然沸石的研究Ⅱ. 吸附性质[J]. 化学学报, 2000, 58(8): 988-991. |
LI J, QIU J, LONG Y C. Studies on CXN natural zeoliteII. Adsorption properties[J]. Acta Chimica Sinica, 2000, 58(8): 988-991. | |
34 | 余楠, 王如竹. 以硅胶和活性炭为基质的复合吸附剂吸附性能的对比[J]. 科学通报, 2015, 60(21): 2029-2035. |
YU N, WANG R Z. Comparison study on the sorption properties of silica gel- and activated carbon-LiCl composite sorbents[J]. Chinese Science Bulletin, 2015, 60(21): 2029-2035. | |
35 | 田维亮, 葛振红, 穆金城, 等. 天然蛭石 PVC 热稳定剂的制备和性能研究[J]. 现代化工, 2018, 38(9): 72-76. |
TIAN W L, GE Z H, MU J C, et al. Preliminary preparation and properties of natural vermiculite-based PVC heat stabilizers[J]. Modern Chemical Industry, 2018, 38(9): 72-76. | |
36 | BRANCATO V, GORDEEVA L G, SAPIENZA A, et al. Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications[J]. International Journal of Refrigeration, 2019, 105: 92-100. |
37 | GREKOVA A D, GORDEEVA L G, ARISTOV Y I. Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage[J]. Applied Thermal Engineering, 2017, 124: 1401-1408. |
38 | 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370. |
ZHANG Y N, WANG R Z, LI T X. Sorption characteristics and thermal storage performance of expanded vermiculite/CaCl2 composite sorbent[J]. CIESC Journal, 2018, 69(1): 363-370. | |
39 | MICHEL B, MAZET N, MAURAN S, et al. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed[J]. Energy, 2012, 47(1): 553-563. |
40 | ZHANG Y N, WANG R Z, ZHAO Y J, et al. Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage[J]. Energy, 2016, 115: 120-128. |
41 | CASEY S P, ELVINS J, RIFFAT S, et al. Salt impregnated desiccant matrices for “open” thermochemical energy storage-selection, synthesis and characterisation of candidate materials[J]. Energy Buildings, 2014, 84: 412-425. |
42 | ZHANG Y, WANG R, LI T, et al. Thermochemical characterizations of novel vermiculite-LiCl vomposite sorbents for low-temperature heat storage[J]. Energy, 2016, 9(10): 854. |
43 | SAPIENZA A, GLAZNEV I S, SANTAMARIA S, et al. Adsorption chilling driven by low temperature heat: new adsorbent and cycle optimization[J]. Applied Thermal Engineering, 2012, 32: 141-146. |
44 | ZHONG Y, CRITOPH R, THORPE R, et al. Isothermal sorption characteristics of the BaCl2-NH3 pair in a vermiculite host matrix[J]. Applied Thermal Engineering, 2007, 27(14/15): 2455-2462. |
45 | ZHONG Y, CRITOPH R E, THORPE R N, et al. Dynamics of BaCl2-NH3 adsorption pair[J]. Applied Thermal Engineering, 2009, 29(5/6): 1180-1186. |
46 | VESELOVSKAYA J V, TOKAREV M M. Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 4. Dynamics of quasi-isobaric ammonia sorption and desorption on BaCl2/vermiculite[J]. Applied Thermal Engineering, 2011, 31(4): 566-572. |
47 | GREKOVA A D, VESELOVSKAYA J V, TOKAREV M M, et al. Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 5. Designing the composite adsorbent for ice makers[J]. Applied Thermal Engineering, 2012, 37: 80-86. |
48 | VESELOVSKAYA J V, TOKAREV M M, GREKOVA A D, et al. Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 6. The ways of adsorption dynamics enhancement[J]. Applied Thermal Engineering, 2012, 37: 87-94. |
49 | JIN Jiao, TAN Yanqing, LIU Ruohua, et al. Synergy effect of attapulgite, rubber, and diatomite on organic montmorillonite-modified asphalt[J]. Journal of Materials in Civil Engineering, 2019, 31(2): 1-8. |
50 | JÄNCHEN J, ACKERMANN D, WEILER E, et al. Calorimetric investigation on zeolites, AlPO4’s and CaCl2 impregnated attapulgite for thermochemical storage of heat[J]. Thermochimica Acta, 2005, 434(1/2): 37-41. |
51 | CHEN H J, CUI Q, TANG Y, et al. Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications[J]. Applied Thermal Engineering, 2008, 28(17/18): 2187-2193. |
52 | POSERN K, KAPS C. Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2[J]. Thermochimica Acta, 2010, 502(1/2): 73-76. |
53 | LIU H, NAGANO K, SUGIYAMA D, et al. Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat[J]. International Journal of Heat and Mass Transfer, 2013, 65: 471-480. |
54 | LIU H, NAGANO K, TOGAWA J. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system[J]. Solar Energy, 2015, 111: 186-200. |
55 | JABBARI-HICHRI A, BENNICI S, AUROUX A. Enhancing the heat storage density of silica-alumina by addition of hygroscopic salts (CaCl2, Ba(OH)2, and LiNO3)[J]. Solar Energy Materials and Solar Cells, 2015, 140: 351-360. |
56 | 李书进, 蒋晓曙, 刘燕, 等. 多孔相变储能颗粒的制备及蓄热性能研究[J]. 新型建筑材料, 2012, 10: 85-87, 90. |
LI S J, JIANG X S, LIU Y, et al. Preparation and research on heat preservation performance of porous phase change energy storage granual material[J]. New Building Materials, 2012, 10: 85-87, 90. | |
57 | FLORIDES G A, TASSOU S A, KALOGIROU S A, et al. Review of solar and low energy cooling technologies for buildings[J]. Renewable and Sustainable Energy Reviews, 2002, 6(6): 557-572. |
58 | LI G, HWANG Y, RADERMACHER R. Review of cold storage materials for air conditioning application[J]. International Journal of Refrigeration, 2012, 35(8): 2053-2077. |
59 | HWANG Y, RADERMACHER R, ALILI A A, et al. Review of solar cooling technologies[J]. HVAC&R Research, 2008, 14(3): 507-528. |
60 | SARBU I, SEBARCHIEVICI C. General review of solar-powered closed sorption refrigeration systems[J]. Energy Conversion Management, 2015, 105: 403-422. |
61 | ZIEGLER F. Sorption heat pumping technologies: comparisons and challenges[J]. International Journal of Refrigeration, 2009, 32(4): 566-576. |
62 | SARBU I, SEBARCHIEVICI C. Review of solar refrigeration and cooling systems[J]. Energy Buildings, 2013, 67: 286-297. |
63 | HASSAN H Z, MOHAMAD A A. A review on solar cold production through absorption technology[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5331-5348. |
64 | CABEZA L F, SOLÉ A, BARRENECHE C. Review on sorption materials and technologies for heat pumps and thermal energy storage[J]. Renewable Energy, 2017, 110: 3-39. |
65 | SCAPINO L, ZONDAG H A, BAEL J VAN, et al. Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale[J]. Applied Energy, 2017, 190: 920-948. |
66 | ROSATO A, SIBILIO S. Preliminary experimental characterization of a three-phase absorption heat pump[J]. International Journal of Refrigeration, 2013, 36(3): 717-729. |
67 | KERSKES H, METTE B, BERTSCH F, et al. Chemical energy storage using reversible solid/gas-reactions (CWS)-results of the research project[J]. Energy Procedia, 2012, 30: 294-304. |
68 | N’TSOUKPOE K E, RESTUCCIA G, SCHMIDT T, et al. The size of sorbents in low pressure sorption or thermochemical energy storage processes[J]. Energy, 2014, 77: 983-998. |
69 | ABEDIN A H, ROSEN M A. Closed and open thermochemical energy storage: energy- and exergy-based comparisons[J]. Energy, 2012, 41(1): 83-92. |
70 | AYDIN D, CASEY S P, CHEN X J, et al. Novel “open-sorption pipe” reactor for solar thermal energy storage[J]. Energy Conversion Management, 2016, 121: 321-334. |
71 | YU N, WANG R Z, WANG L W. Theoretical and experimental investigation of a closed sorption thermal storage prototype using LiCl/water[J]. Energy, 2015, 93: 1523-1534. |
72 | ZHAO Y J, WANG R Z, LI T X, et al. Investigation of a 10kWh sorption heat storage device for effective utilization of low-grade thermal energy[J]. Energy, 2016, 113: 739-747. |
73 | VESELOVSKAYA J V, CRITOPH R E, THORPE R N, et al. Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 3. Testing of “BaCl2/vermiculite” composite in a lab-scale adsorption chiller[J]. Applied Thermal Engineering, 2010, 30(10): 1188-1192. |
74 | WU S, LI T X, YAN T, et al. Experimental investigation on a thermochemical sorption refrigeration prototype using EG/SrCl2-NH3 working pair[J]. International Journal of Refrigeration, 2018, 88: 8-15. |
75 | YUAN Y, BAO H, MA Z, et al. Investigation of equilibrium and dynamic performance of SrCl2-expanded graphite composite in chemisorption refrigeration system[J]. Applied Thermal Engineering, 2019, 147: 52-60. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[5] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[6] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[7] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[8] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[9] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[10] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[11] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[12] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[13] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[14] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[15] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |