化工进展 ›› 2020, Vol. 39 ›› Issue (3): 1000-1011.DOI: 10.16085/j.issn.1000-6613.2019-0982
收稿日期:
2019-06-19
出版日期:
2020-03-05
发布日期:
2020-04-03
通讯作者:
胡斌
作者简介:
鲁金芝(1994—),女,硕士研究生,研究方向为多相催化。E-mail:基金资助:
Jinzhi LU1,2(),Xuemei WEI1,2,Zhanwei MA1,Bin HU1()
Received:
2019-06-19
Online:
2020-03-05
Published:
2020-04-03
Contact:
Bin HU
摘要:
木质素是一种重要的生物质可再生资源,其降解后得到的酚类物质加氢后可得大量高附加值化学品,在环境治理和原料利用方面都有着十分重要的影响。本文综述了近年来国内外木质素酚类加氢反应催化剂的研究进展,总结了液相酚类催化加氢催化剂的种类、反应机理及结构敏感性因素对酚类催化加氢反应活性的影响,阐述了催化剂颗粒尺寸对液相酚类加氢反应活性影响,并以木质素液相酚类加氢反应催化剂的活性金属和载体为体系,对现有的结构敏感性反应中催化剂存在的形貌效应、晶相效应进行了讨论。提出未来可通过控制催化剂形貌和晶相来研究催化剂形态与催化活性之间的构效关系,为今后设计高活性木质素液相酚类加氢催化剂提供借鉴和参考。
中图分类号:
鲁金芝,魏雪梅,马占伟,胡斌. 催化剂形态与酚类化合物加氢反应活性构效关系的研究进展[J]. 化工进展, 2020, 39(3): 1000-1011.
Jinzhi LU,Xuemei WEI,Zhanwei MA,Bin HU. Advances in research on structure-activity relationship between catalyst morphology and phenolic compounds in hydrogenation[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1000-1011.
1 | 张勤生,王来来.木质素及其模型化合物的加氢脱氧反应研究进展[J].分子催化,2013,27(1):89-97. |
ZHANG Q S,WANG L L.Research progress on hydrodeoxygenation of lignin and its model compounds[J].Journal of Molecular Catalysis,2013,27(1):89-97. | |
2 | LI Z L,LIU J H,XIA C G,et al.Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol[J].ACS Catalysis,2013,3(11):2440-2448. |
3 | WEI Z Z,LI Y,WANG J,et al.Chemoselective hydrogenation of phenol to cyclohexanol using heterogenized cobalt oxide catalysts[J].Chinese Chemical Letters,2018,29(6):815-818. |
4 | GUTIERREZ A,KAILA R K,HONKELA M L,et al.Hydrodeoxygenation of guaiacol on noble metal catalysts[J].Catalysis Today,2009,147(3/4):239-246. |
5 | SHAFAGHAT H,REZAEI P S,DAUD W M.Using decalin and tetralin as hydrogen source for transfer hydrogenation of renewable lignin-derived phenolics over activated carbon supported Pd and Pt catalysts[J].Journal of the Taiwan Institute of Chemical Engineers,2016,65:91-100. |
6 | LI M M,LI Y,JIA L,et al.Tuning the selectivity of phenol hydrogenation on Pd/C with acid and basic media[J].Catalysis Communications,2018,103:88-91. |
7 | WANG Y,YAO J,LI H R,et al.Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media[J].Journal of the American Chemical Society,2011,133(8):2362-2365. |
8 | CHEN M Y,HUANG Y B,PANG H,et al.Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems[J].Green Chemistry,2015,17(3):1710-1717. |
9 | KUKLIN S,MAXIMOV A,ZOLOTUKHINA A,et al.New approach for highly selective hydrogenation of phenol to cyclohexanone: combination of rhodium nanoparticles and cyclodextrins[J].Catalysis Communications,2016,73:63-68. |
10 | XIANG Y Z,LI X N.Liquid phasein-situ hydrogenation of phenol for synthesis of cyclohexanone and cyclohexanol[J].Journal of Chemical Industry and Engineering(China),2007,58(12):3041-3045. |
11 | SCHUTYSER W,BOSCH S VAN EDN,DIJKMANS J,et al.Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks[J].Chemsuschem,2015,8(10):1805-1818. |
12 | HE J,LU X H,SHEN Y,et al.Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium[J].Molecular Catalysis,2017,440:87-95. |
13 | LIU X H,JIA W D,XU G Y,et al.Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts[J].ACS Sustainable Chemistry & Engineering,2017,5(10):8594-8601. |
14 | MAKOWSKI P,CAKAN R D,ANTONIETTI M,et al.Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon[J].Chemical Communications,2008(8):999-1001. |
15 | XIANG Y Z,KONG L N,XIE P Y,et al.Carbon nanotubes and activated carbons supported catalysts for phenolin situ hydrogenation: hydrophobic/hydrophilic effect[J].Industrial & Engineering Chemistry Research,2014,53(6):2197-2203. |
16 | XU T Y,ZHANG Q F,CEN J,et al.Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification: role of C—O oxygen species[J].Applied Surface Science,2015,324:634-639. |
17 | NELSON N C,MANZANO J S,SADOW A D,et al.Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure[J].ACS Catalysis,2015,5(4):2051-2061. |
18 | LIU J L,LI H,LI H X.Liquid-phase selective hydrogenation of phenol to cyclohexanone over Pd-Ce-B/hydrotalcite catalyst[J].Chinese Journal of Catalysis,2007,28(4):312-316. |
19 | ZHOU H,HAN B B,LIU T Z,et al.Selective phenol hydrogenation to cyclohexanone over alkali-metal-promoted Pd/TiO2 in aqueous media[J].Green Chemistry,2017,19(15):3585-3594. |
20 | CHEN A B,ZHAO G Y,CHEN J Z,et al.Selective hydrogenation of phenol and derivatives over an ionic liquid-like copolymer stabilized palladium catalyst in aqueous media[J].RSC Advances,2013,3(13):4171-4175. |
21 | ZHANG D M,GUAN Y J,HENSEN E J M,et al.Porous MOFs supported palladium catalysts for phenol hydrogenation: a comparative study on MIL-101 and MIL-53[J].Catalysis Communications,2013,41:47-51. |
22 | LI X Z,CHENG L,WANG X Y.Selective phenol hydrogenation under mild condition over Pd catalysts supported on Al2O3 and SiO2[J].Research on Chemical Intermediates,2019,45(3):1249-1262. |
23 | LU F,LIU J,XU J.Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity for hydrogenation of phenol in aqueous media[J].Materials Chemistry and Physics,2008,108(2/3):369-374. |
24 | BAEZA J A,CALVO L,GILARRANZ M A,et al.Effect of size and oxidation state of size-controlled rhodium nanoparticles on the aqueous-phase hydrodechlorination of 4-chlorophenol[J].Chemical Engineering Journal,2014,240:271-280. |
25 | MORTENSEN P M,GRUNWALDT J D,JENSEN P A,et al.Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2[J].Catalysis Today,2016,259:277-284. |
26 | QI J B,TANG S F,Sun Y Y.et al. Nickel phosphides supported on HZSM-5 for catalytic hydrodeoxygenation of eugenol: effect of phosphorus content[J].Chemistryselect,2017,2(25):7525-7529. |
27 | SHE T T,CHU X N,ZHANG H L,et al.Ni-Mg/γ-Al2O3 catalyst for 4-methoxyphenol hydrogenation: effect of Mg modification for improving stability[J].Journal of Nanoparticle Research,2018,20(9):224. |
28 | QIAO B T,WANG A Q,YANG X F,et al.Single-atom catalysis of CO oxidation using Pt1/FeOx[J].Nature Chemistry,2011,3(8):634-641. |
29 | 靳永勇,郝盼盼,任军,等.单原子催化——概念、方法与应用[J].化学进展,2015,27(12):1689-1704. |
JIN Y Y,HAO P P,REN J,et al.Single atom catalysis : concept, method and application[J].Progress in Chemistry,2015,27(12):1689-1704. | |
30 | HU L H,PENG Q,LI Y D.Selective synthesis of Co3O4nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion[J].Journal of the American Chemical Society,2008,130(48):16136-16137. |
31 | ZHOU K B,LI Y D.Catalysis based on nanocrystals with well-defined facets[J].Angewandte Chemie: International Edition,2012,51(3):602-613. |
32 | JIN M S,ZHANG H,XIE Z X,et al.Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation[J].Energy & Environmental Science,2012,5(4):6352-6357. |
33 | CRESPO-QUESADA M,YERULIN A,JIN M S,et al.Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective?[J].Journal of the American Chemical Society,2011,133(32):12787-12794. |
34 | KIM S,LEE D W,LEE K Y.Shape-dependent catalytic activity of palladium nanoparticles for the direct synthesis of hydrogen peroxide from hydrogen and oxygen[J].Journal of Molecular Catalysis A:Chemical,2014,391:48-54. |
35 | QIAN J,SHEN M,ZHOU S,et al.Synthesis of Pt nanocrystals with different shapes using the same protocol to optimize their catalytic activity toward oxygen reduction[J].Materials Today,2018,21(8):834-844. |
36 | YIN A X,LIU W C,KE J,et al.Ru nanocrystals with shape-dependent surface-enhanced raman spectra and catalytic properties: controlled synthesis and DFT calculations[J].Journal of the American Chemical Society,2012,134(50):20479-20489. |
37 | LI Y Y,DIAO P,JIN T,et al.Shape-controlled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation[J].Electrochimica Acta,2012,83:146-154. |
38 | ZHOU W,ZHOU M,HU J R,et al.Shape-controlled synthesis of Ni nanocrystalsvia a wet-chemistry strategy and their shape-dependent catalytic activity[J].Crystengcomm,2019,21(9):1416-1422. |
39 | MENG B,ZHAO Z B,WANG X Z,et al.Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes[J].Applied Catalysis B: Environmental,2013,129:491-500. |
40 | ZHOU K B,WANG X,SUN X M,et al.Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J].Journal of Catalysis,2005,229(1):206-212. |
41 | MA Z W,ZHAO S L,PEI X P,et al.New insights into the support morphology-dependent ammonia synthesis activity of Ru/CeO2 catalysts[J].Catalysis Science & Technology,2017,7(1):191-199. |
42 | YANG H G,SUN C H,QIAO S Z,et al.Anatase TiO2 single crystals with a large percentage of reactive facets[J].Nature,2008,453(7195):638-U4 |
43 | ZHAO X W,JIN W Z,CAI J G,et al.Shape- and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets[J].Advanced Functional Materials,2011,21(18):3554-3563. |
44 | CHEN C D,XU L F,SEWVANDI G A,et al.Microwave-assisted topochemical conversion of layered titanate nanosheets to {010}-faceted anatase nanocrystals for high performance photocatalysts and dye-sensitized solar cells[J].Crystal Growth & Design,2014,14(11):5801-5811. |
45 | OGIHARA H,SADAKANE M,NODASAKA Y,et al.Shape-controlled synthesis of ZrO2, Al2O3, and SiO2 nanotubes using carbon nanofibers as templates[J].Chemistry of Materials,2006,18(21):4981-4983. |
46 | GULKOVA D,SOLCOVA O,ZDRAZIL M.Preparation of MgO catalytic support in shaped mesoporous high surface area form[J].Microporous and Mesoporous Materials,2004,76(1/2/3):137-149. |
47 | CHENG H F,YANG N L,LU Q P,et al.Syntheses and properties of metal nanomaterials with novel crystal phases[J].Advanced Materials,2018,30(26):1707189. |
48 | LIU J X,LI W X.Theoretical study of crystal phase effect in heterogeneous catalysis[J].Wiley Interdisciplinary Reviews: Computational Molecular Science,2016,6(5):571-583. |
49 | KUSADA K,KITAGAWA H.A route for phase control in metal nanoparticles: a potential strategy to create advanced materials[J].Advanced Materials,2016,28(6):1129-1142. |
50 | KARACA H,HONG J P,FONGARLAND P,et al.In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis[J].Chemical Communications,2010,46(5):788-790. |
51 | KITAKAMI O,SATO H,SHIMADA Y,et al.Size effect on the crystal phase of cobalt fine particles[J].Physical Review B,1997,56(21):13849-13854. |
52 | LIU J X,SU H Y,SUN D P,et al.Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J].Journal of the American Chemical Society,2013,135(44):16284-16287. |
53 | KUSADA K,KOBAYASHI H,YAMAMOTO T,et al.Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method[J].Journal of the American Chemical Society,2013,135(15):5493-5496. |
54 | ABO-HAMED E K,PENNYCOOK T,VAYNZOF Y,et al.Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane[J].Small,2014,10(15):3145-3152. |
55 | OVER H,KIM Y D,SEITSONEN A P,et al.Atomic-scale structure and catalytic reactivity of the RuO2(110) surface[J].Science,2000,287(5457):1474-1476. |
56 | CHEN L X,ZHU J,XUAN C J,et al.Effects of crystal phase and composition on structurally ordered Pt-Co-Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction[J].Journal of Materials Chemistry A,2018,6(14):5848-5855. |
57 | HUANG J L,LI Z,DUAN H H,et al.Formation of hexagonal-close packed (HCP) rhodium as a size effect[J].Journal of the American Chemical Society,2017,139(2):575-578. |
58 | KONDRATENKO E V,AMRUTE A P,POHL M M,et al.Superior activity of rutile-supported ruthenium nanoparticles for HCl oxidation[J].Catalysis Science & Technology,2013,3(10):2555-2558. |
59 | LIN Q Q,LIU X Y,JIANG Y,et al.Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation[J].Catalysis Science & Technology,2014,4(7):2058-2063. |
60 | ZHANG X,WANG H,XU B Q.Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation[J].Journal of Physical Chemistry B,2005,109(19):9678-9683. |
61 | STICHERT W,SCHUTH F,KUBA S,et al.Monoclinic and tetragonal high surface area sulfated zirconias in butane isomerization: CO adsorption and catalytic results[J].Journal of Catalysis,2001,198(2):277-285. |
62 | JACOB K H,KNOZINGER E,BENIER S.Adsorption sites on polymorphic zirconia[J].Journal of Materials Chemistry,1993,3(6):651-657. |
63 | ZHAO Y B,LI W,ZHANG M H,et al.A comparison of surface acidic features between tetragonal and monoclinic nanostructured zirconia[J].Catalysis Communications,2002,3(6):239-245. |
64 | LI J,CHEN J L,SONG W,et al.Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for low-temperature water gas shift reaction[J].Applied Catalysis A: General,2008,334(1/2):321-329. |
65 | RANE S,BORG O,RYTTER E,et al.Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt Fischer-Tropsch catalysts[J].Applied Catalysis A: General,2012,437:10-17. |
66 | SHIMURA K,MIYAZAWA T,HANAOKA T,et al.Fischer-Tropsch synthesis over alumina supported cobalt catalyst: effect of crystal phase and pore structure of alumina support[J].Journal of Molecular Catalysis A: Chemical,2014,394:22-32. |
67 | CHAITREE W,JIEMSIRILERS S,MEKASUANDUMRONG O,et al.Effect of nanocrystalline chi-Al2O3 structure on the catalytic behavior of Co/Al2O3 in CO hydrogenation[J].Catalysis Today,2011,164(1):302-307. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[6] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[15] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |