1 |
GALVIS H M T , BITTER J H , KHARE C B , et al . Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838.
|
2 |
CORMA A , MELO F V , SAUVANAUD L , et al . Light cracked naphtha processing: controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107/108: 699-706.
|
3 |
CHENG K , VIRGINIE M , ORDOMSKYO V V , et al . Pore size effects in high-temperature Fischer-Tropsch synthesis over supported iron catalysts[J]. Journal of Catalysis, 2015, 328: 139-150.
|
4 |
董丽, 杨学萍 . 合成气直接制低碳烯烃技术发展前景[J]. 石油化工, 2012, 41(10): 1201-1206.
|
|
DONG L , YANG X P . New advances in direct production of light olefins from syngas[J]. Petrochemical Technology, 2012, 41(10): 1201-1206.
|
5 |
郭海军, 张海荣, 王璨, 等 . 合成气一步法直接转化制备低碳烯烃催化剂研究进展[J]. 新能源进展, 2017, 5(5): 358-364.
|
|
GUO H J , ZHANG H R , WANG C , et al . Advances in catalysts for one-step direct conversion of syngas to light olefins[J]. Advances in New and Renewable Energy, 2017, 5(5): 358-364.
|
6 |
DE SMIT E , WECKHUYSEN B M . The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12): 2758-2781.
|
7 |
LIU Y , CHEN J F , ZHANG Y . Effects of pretreatment on iron-based catalysts for forming light olefins via Fischer-Tropsch synthesis[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(2): 433-449.
|
8 |
LIU Y , CHEN J F , BAO J , et al . Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catalysis, 2015, 5(6): 3905-3909.
|
9 |
蔡丽萍 . 助催化剂及工艺参数对Fe(1- x )O催化剂费-托合成性能的影响[D].杭州: 浙江工业大学,2006.
|
|
CAI L P . Effect of promoters and reaction conditions on Fe1- x O-based iron catalysts for Fischer-Tropsch synthesis[D]. Hangzhou: Zhejiang University of Technology, 2006.
|
10 |
LI T Z , WANG H L , YANG Y , et al . Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis[J]. Journal of Energy Chemistry, 2013, 22(4): 624-632.
|
11 |
ZHAO M , CUI Y , SUN J C , et al . Modified iron catalyst for direct synthesis of light olefin from syngas[J]. Catalysis Today, 2018, 316: 142-148.
|
12 |
GAO X H , ZHANG J l , CHEN N , et al . Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process[J]. Chinese Journal of Catalysis, 2016, 37 (4): 510-516.
|
13 |
WANG G C , ZHANG K , LIU P , et al . Synthesis of light olefins from syngas over Fe-Mn-V-K catalysts in the slurry phase[J]. Journal of Industrial and Engineering Chemistry, 2013, 19 (3): 961-965.
|
14 |
GALVIS H M T , DE JONG K P . Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catalysis, 2013, 3(9): 2130-2149.
|
15 |
夏航, 杨霞珍, 霍超, 等 . 合成气一步制取低碳烯烃铁基催化剂的研究进展[J]. 现代化工, 2016,36(8):19-23.
|
|
XIA H , YANG X Z , HUO C , et al . Research progress of iron-based catalyst for direct conversion of synthesis gas to light olefins[J]. Modern Chemical Industry, 2016, 36(8): 19-23.
|
16 |
SAGE V , BURKE N . Use of probe molecules for Fischer-Tropsch mechanistic investigations: a short review[J]. Catalysis Today, 2011, 178(1): 137-141.
|
17 |
GU B , ORDOMSKY V V , BAHRI M , et al . Effects of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts[J]. Applied Catalysis B: Environmental, 2018, 234: 153-166.
|
18 |
JIAO F , LI J J , PAN X L , et al . Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
|
19 |
CHANG Q , ZHANG C H , LIU C W , et al . Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ˗Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts[J]. ACS Catalysis, 2018, 8(4): 3304-3316.
|
20 |
PARK B J , JANG S H , LEE J H, et al . Hyperactive iron carbide@N-doped reduced graphene oxide/carbon nanotube hybrid architecture for rapid CO hydrogenation[J]. Journal of Materials Chemistry A, 2018, 6(24): 11134-11139.
|
21 |
OBRIEN R J , XU L G , SPICER R L , et al . Activation study of precipitated iron Fischer-Tropsch catalysts[J]. Energy & Fuels, 1996, 10(4): 921-926.
|
22 |
TONG A , DAN D, YI C . Effect of reduction and carburization pretreatment on iron catalyst for synthesis of light olefins from CO hydrogenation[J]. Chemical Research in Chinese Universities, 2017, 33(4): 672-677.
|
23 |
LIU X W , ZHAO S , MENG Y , et al . Mössbauer spectroscopy of iron carbides: from prediction to experimental confirmation[J]. Scientific Reports, 2016, 6: 26184.
|
24 |
DING M Y , YANG Y , XU J , et al . Effect of reduction pressure on precipitated potassium promoted iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2008, 345(2): 176-184.
|
25 |
WANG X B , CHEN X D , DING H , et al . Synthesis and magnetic properties of Fe3C doped with Mn or Ni for applications as adsorbents[J]. Dyes and Pigments, 2017, 144: 76-79.
|
26 |
YANG C , ZHAO H B , HOU Y L , et al . Fe5C2 Nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2012, 134(38): 15814-15821.
|
27 |
WANG P , CHEN W , CHIANG F K , et al . Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalysts[J]. Science Advances, 2018, 4(10): 2947.
|
28 |
PHAM T H , DUAN X Z , QIAN G , et al . CO activation pathways of Fischer-Tropsch synthesis on χ-Fe5C2 (510): direct versus hydrogen-assisted CO dissociation[J]. Journal of Physical Chemistry C, 2014, 118(19): 10170-10176.
|
29 |
WANG D , CHEN B X , DUAN X Z , et al . Iron-based Fischer-Tropsch synthesis of lower olefins: the nature of χ-Fe5C2, catalyst and why and how to introduce promoters[J]. Journal of Energy Chemistry, 2016, 25(6): 911-916.
|
30 |
KANG S W , KIM K , CHUN D H , et al . High-performance Fe5C2@CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons[J]. Journal of Catalysis, 2017, 349: 66-74.
|
31 |
HU E L , YU X Y , CHEN F , et al . Graphene layers-wrapped Fe/Fe5C2 nanoparticles supported on N-doped graphene nanosheets for highly efficient oxygen reduction[J]. Advanced Energy Materials, 2017, 8(9): 1702476.
|
32 |
DE SMIT E , CINQUINI F , BEALE A M , et al . Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ c [J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941.
|
33 |
XIANG M L , ZOU J , LI Q H , et al . Catalytic performance of iron carbide for carbon monoxide hydrogenation[J]. Journal of Natural Gas Chemistry, 2010, 19(5): 468-470.
|
34 |
HERRANZ T , ROJAS S , PEREZ-ALONSO F J , et al . Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. Journal of Catalysis, 2006, 243(1): 199-211.
|
35 |
DE SMIT E , BEALE A M , NIKITENKO S , et al . Local and long range order in promoted iron-based Fischer-Tropsch catalysts: a combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study[J]. Journal of Catalysis, 2009, 262(2): 244-256.
|
36 |
CAER G L , DUBOIS J M , PIJOLAT M , et al . Characterization by Mössbauer spectroscopy of iron carbides formed by Fischer-Tropsch synthesis[J]. Journal of Physical Chemistry, 1982, 86(24): 4799-4808.
|
37 |
XU K , SUN B , LIN J , et al . ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst[J]. Nature Communications, 2014, 5: 5783.
|
38 |
LIU X W , ZHAO S , MENG Y , et al . Mössbauer spectroscopy of iron carbides: from prediction to experimental confirmation[J]. Scientific Reports, 2016, 6: 26184.
|
39 |
ZHAO S , LIU X W , HUO C F , et al . Potassium promotion on CO hydrogenation on the χ-Fe5C2(111) surface with carbon vacancy[J]. Applied Catalysis A: General, 2017, 534: 22-29.
|
40 |
GALVIS H M T , BITTER J H , DAVIDIAN T , et al . Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39): 16207-16215.
|
41 |
ZHAO S , LIU X W , HUO C F , et al . The role of potassium promoter in surface carbon hydrogenation on Hägg carbide surfaces[J]. Applied Catalysis A: General, 2015, 493: 68-76.
|