1 |
YAO M Y, NIE J P, ZHANG L X, et al. Integrative flue-gas pollutants removal technology for coal-fired utility boilers[J]. Thermal Power Generation, 2016, 45(3): 8-12.
|
2 |
JOHNSON T V. Vehicular emissions in review[J]. SAE International Journal of Engines, 2016, 9(2): 1259-1275.
|
3 |
BEALE A M, GAO F, LEZCANO-GONZALEZ I, et al. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J]. Chemical Society Reviews, 2015, 44(20): 7371-7405.
|
4 |
WANG J H, ZHAO H W, HALLER G, et al. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts[J]. Applied Catalysis B: Environmental, 2017, 202: 346-354.
|
5 |
JANSSEN F, MEIJER R. Quality control of deNOx catalysts: performance testing, surface analysis and characterization of deNOx catalysts[J]. Catalysis Today, 1993, 16(2): 157-158.
|
6 |
LIU X S, WU X D, XU T F, et al. Effects of silica additive on the SCR activity and thermal stability of a V2O5/WO3-TiO2 catalysts[J]. Chinese Journal of Catalysis, 2016, 37(8): 1340-1346.
|
7 |
ZHANG S L, ZHONG Q. Promotional effect of WO3- on O2- over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. Journal of Molecular Catalysis A: Chemical, 2013, 373: 108-113.
|
8 |
MADIA G, ELSENER M, KOEBEL M, et al. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process[J]. Applied Catalysis B: Environmental, 2002, 39(2): 181-190.
|
9 |
KOMPIO P G, BRÜCHNER A, HIPLER F, et al. V2O5/WO3-TiO2 catalysts under thermal stress: responses of structure and catalytic behavior in the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental, 2017, 217(1): 365-377.
|
10 |
刘庆航, 晏乃强, 翟赞, 等. 溴掺杂钒钛催化剂SCR反应动力学研究[J]. 高等化学工程学报, 2017, 31(5): 1193-1200.
|
|
LIU Q H, YE N Q, ZHAI Z, et al. Kinetic study on selective catalytic reduction of NOx by Br-doped V2O5/TiO2 catalysts[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(5): 1193-1200.
|
11 |
LIU X S, WU X D, WENG D, et al. Evolution of copper species on Cu/SAPO-34 SCR catalysts upon hydrothermal aging[J]. Catalysis Today, 2017, 281: 596-604.
|
12 |
张道军, 马子然, 孙琦, 等. 选择催化还原(SCR)反应机理研究进展[J]. 化工进展, 2019, 38(4): 1611-1623.
|
|
ZHANG D J, MA Z R, SUN Q, et al. Progress in the mechanism of selective catalytic reduction (SCR) reaction[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1611-1623.
|
13 |
SHEN M Q, LI C X, WANG J Q, et al. New insight into the promotion effect of Cu doped V2O5/WO3-TiO2 for low temperature NH3-SCR performance[J]. RSC Advances, 2015, 5(44): 35155-35165.
|
14 |
RASMUSSEN S B, ABRAMS B L. Fundamental chemistry of V-SCR catalysts at elevated temperatures[J]. Catalysis Today, 2017, 297: 60-63.
|
15 |
ZONG L Y, DONG F, ZHANG G D, et al. Highly efficient mesoporous V2O5/WO3-TiO2 catalyst for selective catalytic reduction of NOx: effect of the valence of V on the catalytic performance[J]. Catalysis Surveys from Asia, 2017, 21(3): 103-113.
|
16 |
YANG N Z, GUO R T, PAN W G, et al. The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. Fuel, 2016, 169: 87-92.
|
17 |
XU H D, WANG Y, GAO Y, et al. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3[J]. Chemical Engineering Journal, 2014, 240: 62-73.
|
18 |
PUTLURU S S R, SCHILL L, GARDINI D, et al. Superior deNOx activity of V2O5-WO3/TiO2 catalysts prepared by deposition-precipitation method[J]. Journal of Materials Science, 2014, 49(7): 2705-2713.
|
19 |
WENT G T, LEU L J, ROSIN R R, et al. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3[J]. Journal of Catalysis, 1992, 134(2): 492-505.
|
20 |
WANG C Z, YANG S J, CHANG H Z, et al. Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: acidity, surface species and catalytic activity[J]. Chemical Engineering Journal, 2013, 225: 520-527.
|
21 |
PUTLURU S S R, SCHILL L, GODIKSEN A, et al. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2016, 183(7): 282-290.
|
22 |
YU W C, WU X D, SI Z C, et al. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5/WO3-TiO2 catalyst[J]. Applied Surface Science, 2013, 283: 209-214.
|
23 |
AGUILAR-ROMERO M, CAMPOSECO R, CASTILLO S, et al. Acidity, surface species, and catalytic activity study on V2O5-WO3/TiO2 nanotube catalysts for selective NO reduction by NH3[J]. Fuel, 2017, 178:123-133.
|
24 |
SHEN H Z, IE I R, YUAN C S, et al. Removal of elemental mercury by TiO2 doped with WO3 and V2O5 for their photo- and thermo-catalytic removal mechanisms[J]. Environmental Science & Pollution Research International, 2016, 23(6): 5839-5852.
|
25 |
LI F K, SHEN B X, TIAN L H, et al. Enhancement of SCR activity and mechanism stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica[J]. Powder Technology, 2016, 297: 384-391.
|
26 |
REN F Z, LI HY, WANG Y X, et al. Enhanced photocatalytic oxidation of propylene over V-doped TiO2 photocatalyst: reaction mechanism between V5+ and single-electron-trapped oxygen vacancy[J]. Applied Catalysis B: Environmental, 2017, 176/177: 160-172.
|
27 |
XU L W, WANG C Z, CHANG H Z, et al. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environmental Science & Technology, 2018, 52(12): 7064-7071.
|
28 |
ZHOU A Y, YU D Q, YANG L, et al. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping[J]. Applied Surface Science, 2016, 378: 167-173.
|
29 |
CHEN Q L, GUO R T, WANG Q S, et al. The catalytic performance of Mn/TiWOx catalyst for selective catalytic reduction of NOx with NH3[J]. Fuel, 2016, 181: 852-858.
|
30 |
LI Y, ZHONG Q. The characterization and acivity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Journal of Hazardous materials, 2009, 172(2): 635-640.
|
31 |
SHI A J, WANG X Q, YU T, et al. The effect of zirconia additive on the activity and structure stability of V2O5/WO3-TiO2 ammonia SCR catalysts[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 359-369.
|
32 |
BOND G C. Preparation and properties of vanadia/titania monolayer catalysts[J]. Applied Catalysis A: General, 1995, 126(2): 365-380.
|
33 |
WACHS I E, ROBERTS C A. Monitoring surface metal oxide catalytic active site with Raman spectroscopy[J]. Chemical Society Reviews, 2010, 39(2): 5002-5017.
|
34 |
WENT G T, LEU L J, ROSIN R R, et al. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3[J]. Journal of Catalysis, 1992, 134: 492-505.
|