1 |
程昀, 李劼, 贾明, 等. 锂离子电池多尺度数值模型的应用现状及发展前景[J]. 物理学报, 2015, 64(21): 137-152.
|
|
CHENGY, LIJ, JIAM, et al. Application status and future of multi-scale numerical models for lithium ion battery[J]. Acta Phys. Sin., 2015, 64(21): 137-152.
|
2 |
LIUH Q, WEIZ B, HEWD, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review[J]. Energy Conversion & Management, 2017, 150: 304-330.
|
3 |
BERNARDID, PAWLIKOWSKIE, NEWMANJ. A general energy-balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|
4 |
LAIY Q, DUS L, AIL, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049.
|
5 |
SONGL B, LIL, XIAOZ L, et al. Estimation of temperature distribution of LiFePO4 lithium ion battery during charge-discharge process[J]. Ionics, 2016, 22(9): 1517-1525.
|
6 |
XIAOZ L, ZHOUQ Q, SONGL B, et al. Assessment of thermo-electrochemical performance on cathode materials for lithium ion cells[J]. Int. J. Electrochem. Sci., 2016, 11: 2825-2834.
|
7 |
SONGL B, XIAOZ L, LIL J, et al. Thermo-electrochemical study on cathode materials for lithium ion cells[J]. Journal of Solid State Electrochemistry, 2015, 19(7): 2167-2175.
|
8 |
SONGL B, LIUJ, XIAOZ L, et al. Thermo-eletrochemical study on LiNi0.8Co0.1Mn0.1O2 with in situ modification of Li2ZrO3[J]. Ionics, 2018(1): 1-11.
|
9 |
GHALKHANIM, BAHIRAEIF, NAZRIG A, et al. Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017, 247: 569-587.
|
10 |
殷宝华, 艾亮, 杨治安, 等. 锂离子电池模块热模拟仿真[J]. 电源技术, 2017, 41(5): 696-698.
|
|
YINB H, AIL, YANGZ A, et al. Thermal simulation of lithium ion battery module[J]. Chinese Journal of Power Sources, 2017, 41(5): 696-698.
|
11 |
FENGX N, OUYANGM G, LIUX, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, 2017, 10: 246-267.
|
12 |
DONGT, PENGP, JIANGF M. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat & Mass Transfer, 2018, 117: 261-272.
|
13 |
ZHANGC, SANTHANAGOPALANS, SPRAGUEM A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse[J]. Journal of Power Sources, 2015, 290: 102-113.
|
14 |
SHAHIDS, AGELIN-CHAABM. Experimental and numerical studies on air cooling and temperature uniformity in a battery pack[J]. International Journal of Energy Research, 2018(1): 1-17.
|
15 |
BAIF, CHENM, SONGW, et al. Thermal management performances of PCM/Water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126: 17-27.
|
16 |
靳鹏超, 王世学. 一种使用相变材料的新型电动汽车电池热管理系统[J]. 化工进展, 2014, 33(10):2608-2612.
|
|
JINP C, WANGS X. A novel thermal management system for EV batteries using phase-change material[J]. Chemical Industry and Engineering Progess, 2014, 33(10):2608-2612.
|
17 |
曾健, 陆龙生, 陈维, 等. 基于热管技术的锂离子动力电池散热系统[J]. 化工进展, 2015, 34(1): 37-43.
|
18 |
ZENGJ, LUL S, CHENW, et al. Thermal control module using heat pipe for lithium-ion battery[J]. Chemical Industry and Engineering Progess, 2015, 34(1): 37-43.
|
19 |
XIAG D,CAOL, BIG L, et al. A review on battery thermal management in electric vehicle application[J]. Journal of Power Sources, 2017, 367: 90-105.
|
20 |
程昀, 李劼, 贾明,等. 动力锂离子电池模块散热结构仿真研究[J].中国有色金属学报, 2015, 25(6): 1607-1616.
|
|
CHENGY, LIJ, JIAM, et al. Simulation research of heat dissipation structure for automotive lithium-ion battery packs[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1607-1616.
|
21 |
MOHAMMADIANS K, ZHANGY W. Improving wettability and preventing Li-ion batteries from thermal runaway using microchannels[J]. International Journal of Heat & Mass Transfer, 2017, 118: 911-918.
|
22 |
DANGX J, LIY, XUK, et al. Open-circuit voltage-based state of charge estimation of lithium-ion battery using dual neural network fusion battery model[J]. Electrochimica Acta, 2016, 188(10): 356-366.
|
23 |
NUHICA, TERZIMEHICT, SOCZKA-GUTHT, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239(1): 680-688.
|
24 |
FLEISCHERC, WAAGW, BAIZ, et al. On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system[J]. Journal of Power Sources, 2013, 243(6): 728-749.
|
25 |
HUX S, LIS B, PENGH E. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-367.
|
26 |
LEE S J, KIMJ H, LEE J M, et al. The state and parameter estimation of an Li-ion battery using a new OCV-SOC concept[C]// Power Electronics Specialists Conference, 2007. Pesc IEEE, 2007: 2799-2803.
|
27 |
GAOM Y, LIUY Y, HEZ W. Battery state of charge online estimation based on particle filter[C]// International Congress on Image and Signal Processing. IEEE, 2011: 2233-2236.
|
28 |
KIMI S. Nonlinear state of charge estimator for hybrid electric vehicle battery[J]. IEEE Transactions on Power Electronics, 2008, 23(4): 2027-2034.
|
29 |
CHARKHGARDM, ZARIFM H. Design of adaptive H∞, filter for implementing on state-of-charge estimation based on battery state-of-charge-varying modelling[J]. Power Electronics Iet, 2015, 8(10): 1825-1833.
|
30 |
WANGQ Q, KANGJ Q, TANZ X, et al. An online method to simultaneously identify the parameters and estimate states for lithium ion batteries[J]. Electrochimica Acta, 2018, 289: 376-388.
|
31 |
DIN M S E, HUSSEINA A, ABDEL-HAFEZM F. Improved battery SOC estimation accuracy using a modified UKF with an adaptive cell model under real EV operating conditions[J]. IEEE Transactions on Transportation Electrification, 2018, 4(2): 408 - 417.
|
32 |
DOYLEM, FULLERT F, NEWMANJ S. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
|
33 |
NEWMANJ S, THOMASK E, HAFEZIH, et al. Modeling of lithium-ion batteries[J]. Journal of Power Sources, 2003, s119/120/121(3): 838-843.
|
34 |
SANTHANAGOPALANS, GUOQ, RAMADASSP, et al. Review of models for predicting the cycling performance of lithium ion batteries[J]. Journal of Power Sources, 2006, 156(2): 620-628.
|
35 |
ZOUC, MANZIEC, NEŠIĆD. A framework for simplification of PDE-based lithium-ion battery models[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1594-1609.
|
36 |
王靖, 柯少勇, 黄贤坤,等. 锂离子电池电极颗粒分布对电化学性能影响的分析[J]. 化工进展, 2018, 37(7): 2620-2626.
|
|
WANGJ, KES Y, HUANGX K, et al. Analysis of the effects of electrode particle size distribution on the electrochemical performances of lithium ion battery[J]. Chemical Industry and Engineering Progess, 2018, 37(7): 2620-2626.
|
37 |
BARRÉA, DEGUILHEMB, GROLLEAUS, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241(11): 680-689.
|
38 |
LIZ, HUANGJ, LIAWB Y, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182.
|
39 |
RAMADASSP, HARANB, GOMADAMP M, et al. Development of first principles capacity fade model for Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(2): A196-A203.
|
40 |
SAFARIM, MORCRETTEM, TEYSSOTA, et al. Multimodal physics-based aging model for life prediction of Li-ion batteries[J]. Physical Review A, 2009, 156(3): 100-100.
|
41 |
BAEKK W, HONGE S, CHA S W. Capacity fade modeling of a lithium-ion battery for electric vehicles[J]. International Journal of Automotive Technology, 2015, 16(2): 309-315.
|
42 |
蒋跃辉, 艾亮, 贾明, 等. 基于动态参数响应模型的动力锂离子电池循环容量衰减研究[J]. 物理学报, 2017, 66(11): 328-338.
|
43 |
JIANGY H, AIL, JIAM, et al. Cyclic capacity fading of the power lithium ion battery based on a numerical modelling with dynamic responses[J]. Acta Phys. Sin., 2017, 66(11): 328-338.
|
44 |
SCHUSTERS F, BACHT, FLEDERE, et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions[J]. Journal of Energy Storage, 2015, 1(1):44-53.
|
45 |
ARORAP, DOYLEM, WHITER E. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes[J]. Promotion & Education, 1999, 146(10): 3543-3553.
|
46 |
TANGM, ALBERTUSP, NEWMANJ. Two-dimensional modeling of lithium deposition during cell charging[J]. Journal of the Electrochemical Society, 2009, 51(2): 131-157.
|
47 |
YANGX G, LENGY, ZHANGG, et al. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360: 28-40.
|
48 |
李宗赞. 应力及材料塑性变形对锂离子电池性能的影响[D]. 上海: 上海大学, 2015.
|
|
LIZ Z. Impacts of stress and plastic deformation on the performance of lithium ion batteries[D]. Shanghai: Shanghai University, 2015.
|
49 |
SONGY C, SOH A K, ZHANGJ Q. On stress-induced voltage hysteresis in lithium ion batteries: impacts of material property, charge rate and particle size[J]. Journal of Materials Science, 2016, 51(21): 1-10.
|
50 |
李书国, 艾亮, 贾明, 等. 基于电化学热耦合模型的锂离子动力电池极化特性[J]. 中国有色金属学报, 2018(1): 142-149.
|
|
LIS G, AIL, JIAM, et al. Polarization characteristics of lithium ion power battery based on electrochemical-thermal model[J]. The Chinese Journal of Nonferrous Metals, 2018(1): 142-149.
|