化工进展 ›› 2020, Vol. 39 ›› Issue (1): 267-277.DOI: 10.16085/j.issn.1000-6613.2019-0636
收稿日期:
2019-04-21
出版日期:
2020-01-05
发布日期:
2020-01-14
通讯作者:
刘猛
作者简介:
李银生(1995—),男,硕士研究生,研究方向为大气污染物控制。E-mail:基金资助:
Yinsheng LI(),Meng LIU(),Yufeng DUAN,Cong CHEN,Na LI,Jianhong LÜ
Received:
2019-04-21
Online:
2020-01-05
Published:
2020-01-14
Contact:
Meng LIU
摘要:
采用原位氧化法(ISM)、浸渍煅烧法(ICM)和涂覆法(CM)制备聚苯硫醚(PPS)双效催化滤料,在模拟烟气固定床系统中考察了滤料低温NOx催化协同Hg0氧化性能,深入分析了原位氧化滤料表面形貌、元素分布、晶态结构和Hg及NOx赋存形态。结果表明:在相同条件下,3种制备方法对应滤料催化活性大小顺序为Mn-Ce-Fe-Co-Ox/PPS@ISM>Mn-Ce-Fe-Co-Ox/PPS@ICM>Mn-Ce-Fe-Co-Ox/PPS@CM。ISM对应PPS单层饱和负载量约为0.9,活性反应温度窗口为110~210℃,其中170℃时Mn-Ce-Fe-Co-Ox/PPS@ISM的非均相NO氧化、NOx还原和Hg0氧化效率最高分别达到8.6%、84.6%和93.2%。程序升温脱附实验结果表明:(0.9)Mn-Ce-Fe-Co-Ox/PPS@ ISM表面NOx吸附活性位点中弱碱位数量占优,而中碱位化学吸附NO主要以NOy(y=2或3)结构存在,歧化态NO2次之。同时,Hg与NO在氧气条件下以非均相反应途径转化为HgO和Hg(NO3)2/Hg2(NO3)2。表征结果表明:ISM制备的MnOx、CeOx、CoOx和Fe2O3复合氧化物呈弱晶相、高度分散团絮状结构赋存于PPS@ISM纤维。
中图分类号:
李银生,刘猛,段钰锋,陈聪,李娜,吕剑虹. 脱硝协同汞氧化聚苯硫醚四元催化滤料制备方法及理化特性[J]. 化工进展, 2020, 39(1): 267-277.
Yinsheng LI,Meng LIU,Yufeng DUAN,Cong CHEN,Na LI,Jianhong LÜ. Optimal preparation of quaternary catalytic functional PPS filter materials and their chemical properties[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 267-277.
工况 | 反应温度/℃ | 初始Hg0浓度/μg·m-3 | 活性负载量 | O2/% | NO/μL?L-1 | NH3/μL?L-1 | 过滤风速/m·min-1 | 评价类型 | |
---|---|---|---|---|---|---|---|---|---|
0~1h | 1~3.5h | ||||||||
1 | 170 | 45.1 | 0.9 | 5.0 | 300 | 300 | 1.0 | NOx还原 | Hg0氧化 |
2 | 170 | 45.1 | 0.7 | 5.0 | 300 | 300 | 1.0 | ||
3 | 170 | 45.1 | 0.8 | 5.0 | 300 | 300 | 1.0 | ||
4 | 170 | 45.1 | 1.0 | 5.0 | 300 | 300 | 1.0 | ||
5 | 170 | 45.1 | 1.1 | 5.0 | 300 | 300 | 1.0 | ||
6 | 170 | 45.1 | 1.2 | 5.0 | 300 | 300 | 1.0 | ||
7 | 170 | 45.1 | 1.3 | 5.0 | 300 | 300 | 1.0 | ||
8 | 120 | 45.1 | 0.9 | 5.0 | 300 | 300 | 1.0 | ||
9 | 250 | 45.1 | 0.9 | 5.0 | 300 | 300 | 1.0 | ||
10 | 300 | 45.1 | 0.9 | 5.0 | 300 | 300 | 1.0 | ||
11 | 130 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 | NO氧化 | |
12 | 150 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 | ||
13 | 170 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 | ||
14 | 190 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 | ||
15 | 210 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 |
表1 实验工况表
工况 | 反应温度/℃ | 初始Hg0浓度/μg·m-3 | 活性负载量 | O2/% | NO/μL?L-1 | NH3/μL?L-1 | 过滤风速/m·min-1 | 评价类型 | |
---|---|---|---|---|---|---|---|---|---|
0~1h | 1~3.5h | ||||||||
1 | 170 | 45.1 | 0.9 | 5.0 | 300 | 300 | 1.0 | NOx还原 | Hg0氧化 |
2 | 170 | 45.1 | 0.7 | 5.0 | 300 | 300 | 1.0 | ||
3 | 170 | 45.1 | 0.8 | 5.0 | 300 | 300 | 1.0 | ||
4 | 170 | 45.1 | 1.0 | 5.0 | 300 | 300 | 1.0 | ||
5 | 170 | 45.1 | 1.1 | 5.0 | 300 | 300 | 1.0 | ||
6 | 170 | 45.1 | 1.2 | 5.0 | 300 | 300 | 1.0 | ||
7 | 170 | 45.1 | 1.3 | 5.0 | 300 | 300 | 1.0 | ||
8 | 120 | 45.1 | 0.9 | 5.0 | 300 | 300 | 1.0 | ||
9 | 250 | 45.1 | 0.9 | 5.0 | 300 | 300 | 1.0 | ||
10 | 300 | 45.1 | 0.9 | 5.0 | 300 | 300 | 1.0 | ||
11 | 130 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 | NO氧化 | |
12 | 150 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 | ||
13 | 170 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 | ||
14 | 190 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 | ||
15 | 210 | 45.1 | 0.9 | 5.0 | 300 | 0 | 1.0 |
纯汞化合物 | 脱附峰温/℃ | 分解温度/℃ |
---|---|---|
HgO | 308±1;471±1 | 200~360;370~530 |
Hg(NO3)2·H2O | 215±4;280±13;460±25 | 150~370;375~520 |
Hg2(NO3)2·2H2O | 264±35;427±19 | 120~375;376~500 |
表2 几种标准汞化合物分解温度区间[27]
纯汞化合物 | 脱附峰温/℃ | 分解温度/℃ |
---|---|---|
HgO | 308±1;471±1 | 200~360;370~530 |
Hg(NO3)2·H2O | 215±4;280±13;460±25 | 150~370;375~520 |
Hg2(NO3)2·2H2O | 264±35;427±19 | 120~375;376~500 |
1 | 李强. 300MW CFB锅炉烟气污染物超低排放改造脱硝工艺的选取[J]. 内蒙古科技与经济, 2016(20): 106-108. |
LI Qiang. Selection of denitration process for ultra-low emission modification of flue gas pollutants in 300MW CFB[J]. Inner Mongolia Science Technology & Economy, 2016(20): 106-108. | |
2 | DB11139—2015. 锅炉大气污染物排放标准[J]. 中国包装, 2015(7): 13. |
DB11139—2015. Emission standard of air pollutants for coal-burning oil-burning gas-fired boiler[J]. China Packaging, 2015(7): 13. | |
3 | 桑绮, 乐园园, 徐晗. 火电厂大气污染物排放标准、现状及减排技术[J]. 浙江电力, 2011(12): 42-46. |
SANG Qi, LE Yuanyuan, XU Han. Emission standards, current situation and reduction technology of air pollutants for thermal power plant[J]. Zhejiang Electric Power, 2011(12): 42-46. | |
4 | SENIOR C L, HELBLE J J, SAROFIM A F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources[J]. Fuel Processing Technology, 2000, 65: 263-288. |
5 | 董晓真. 同时脱硝脱汞催化剂研究进展[J]. 山东化工, 2016(19): 58-59. |
DONG Xiaozhen. Research and development of denitrification and demereuration catalysts[J]. Shandong Chemical Industry, 2016(19): 58-59. | |
6 | 邱云顺, 沈岳松, 杨波, 等. Mn-Ce-Ni-Ox/PPS滤料低温脱硝影响因素研究[J]. 煤炭技术, 2015, 34(2): 316-318. |
QIU Yunshun, SHEN Yuesong, YANG Bo, et al. Study of influencing factors on low-temperature catalytic performance of Mn-Ce-Ni-Ox/PPS filter for NH3-SCR of NO[J]. Coal Technology, 2015, 34(2): 316-318. | |
7 | 杨波, 沈岳松, 邱云顺, 等. Mn-La-Ce-Ni-Ox/P84一体化滤布的低温脱硝影响因素[J]. 环境工程学报, 2016, 10(11): 6583-6587. |
YANG Bo, SHEN Yuesong, QIU Yunshun, et al. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/P84[J]. Chinese Journal of Environmental Engineering, 2016, 10(11): 6583-6587. | |
8 | 曾红, 刘平乐, 张喻升, 等. 表面涂覆型低温脱硝催化剂的开发与中试应用[J]. 过程工程学报, 2017, 17(6): 1208-1216. |
ZENG Hong, LIU Pingle, ZHANG Yusheng, et al. Development and pilot test of surface-coating SCR denitration catalyst at low temperature[J]. The Chinese Journal of Process Engineering, 2017, 17(6): 1208-1216. | |
9 | YANG B, ZHENG D H, SHEN Y S, et al. Influencing factors on low-temperature deNOx, performance of Mn-La-Ce-Ni-Ox/PPS catalytic filters applied for cement kiln[J]. Journal of Industrial & Engineering Chemistry, 2015, 24: 148-152. |
10 | 刘清, 郑玉婴, 汪谢. 基于MnOx-CeO2/PPSN的低温SCR脱硝[J]. 燃料化学学报, 2012, 40(4): 452-455. |
LIU Qing, ZHENG Yuying, WANG Xie. Research on de-NO by low-temperature SCR based on MnOx-CeO2/PPSN[J]. Journal of Fuel Chemistry and Technology, 2012, 40(4): 452-455. | |
11 | PARK O H, KIM C S, CHO H H. Development of a photoreactive fabric filter for simultaneous removal of VOCs and fine particles[J]. Korean Journal of Chemical Engineering, 2006, 23(2): 194-198. |
12 | 彭真. 基于PPS的锰基催化脱硝-除尘功能一体化滤料的制备及其低温SCR脱硝[D]. 合肥: 合肥工业大学, 2016. |
PENG Zhen. Preparation of PPS filter loaded with MnOx for dust elimination and de-NO by low-temperature SCR[D]. Hefei: Hefei University of Technology, 2016. | |
13 | 郑玉婴, 陈健. 在滤料上原位生成纳米花状二氧化锰催化剂的方法: CN2016108148754[P]. 2016-12-14. |
ZHENG Yuying, CHEN Jian. The method for insitu formation of nano flower-like manganese dioxide catalyst on filter material: CN2016108148754[P]. 2016-12-14. | |
14 | 郑玉婴, 郑伟杰. 一种通过开环聚合法制备脱硝功能化滤料: CN2017105365744[P]. 2017-10-10. |
ZHENG Yuying, ZHENG Weijie. The preparation of denitration functional filter material by ring-opening polymerization: CN2017105365744[P]. 2017-10-10. | |
15 | 黄子杰. 聚偏氟乙烯二次结晶的快速差示扫描量热研究[D]. 南京: 南京大学, 2012. |
HUANG Zijie. The differential fast scanning calorimetry research on the secondary crystallization of polyvinylidene fluoride[D]. Nanjing: Nanjing University, 2012. | |
16 | LOU X R, LIU P F, LI J, et al. Effects of calcination temperature on Mn species and catalytic activities of Mn/ZSM-5 catalyst for selective catalytic reduction of NO with ammonia[J]. Applied Surface Science, 2014, 307: 382-387. |
17 | 陈亚南, 段钰锋, 朱纯, 等. Mo/Mn-TiO2催化剂的脱硝活性及抗SO2性能[J]. 化工进展, 2017, 36(8): 216-223. |
CHEN Yanan, DUAN Yufeng, ZHU Chun, et al. NH3-SCR catalytic activity and SO2 resistance over Mo/Mn-TiO2 catalyst[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 216-223. | |
18 | 黄珍霞, 梁峰, 王军凯, 等. 钴纳米颗粒催化酚醛树脂制备碳纳米管[J]. 硅酸盐学报, 2016, 44(9): 1380-1386. |
HUANG Zhenxia, LIANG Feng, WANG Junkai, et al. Catalytic preparation of carbon nanotubes from phenolic resin using cobalt nanoparticle[J]. Journal of the Chinese Ceramic Society, 2016, 44(9): 1380-1386. | |
19 | PENA D A, UPHADE B S, SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: Ⅰ. Evaluation and characterization of first row transition metals[J]. Journal of Catalysis, 2004, 221(2): 421-431. |
20 | LI J H, CHEN J J, KE R, et al. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catalysis Communications, 2007, 8(12): 1896-1900. |
21 | 张旭楠. CeO2改性SCR催化剂同时脱除烟气中Hg0和NO的实验研究[D].长沙: 湖南大学, 2015. |
ZHANG Xunan. The experimental study on the simultaneous removal of elemental mercury (Hg0) and NO from flue gas by CeO2 modified SCR catalysts[D]. Changsha: Hunan University, 2015. | |
22 | 赵飒, 王长发, 高敏娜, 等. Ni/ Al2O3催化剂的CO2-TPD表征[J]. 工业催化, 2017, 25(6): 78-80. |
ZHAO Sa, WANG Changfa, GAO Minna, et al. CO2-TPD characterization of Ni/Al2O3 catalyst[J]. Industrial Catalysis, 2017, 25(6): 78-80. | |
23 | CAMPA M C, ROSSI S D, FERRARIS G, et al. Catalytic activity of Co-ZSM-5 for the abatement of NOx, with methane in the presence of oxygen[J]. Applied Catalysis B: Environmental, 1996, 8(3): 315-331. |
24 | MACLEOD N, CROPLEY R, LAMBERT R M. Efficient reduction of NOx by H2 under oxygen-rich conditions over Pd/TiO2, catalysts: an in situ DRIFTS study[J]. Catalysis Letters, 2003, 86(1/2/3): 69-75. |
25 | CENTI G, PERATHONER S. Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides[J]. Applied Catalysis A: General, 1995, 132(2): 179-259. |
26 | 李娜, 韦红旗, 段钰锋, 等. SO2与O2对硫改性石油焦吸附剂脱汞性能的影响[J]. 化工进展, 2018, 37(5): 1908-1915. |
LI Na, WEI Hongqi, DUAN Yufeng, et al. Effects of SO2 and O2 on Hg0 removal capacity of sulfur modified petrol coke adsorbents[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1908-1915. | |
27 | RUMAYOR M, DIZA-SOMOANO M, LOPEZ-ANTON M A, et al. Mercury compounds characterization by thermal desorption[J]. Talanta, 2013, 114(3): 318-322. |
28 | KATO A, MATSUDA S, KAMO T, et al. Reaction between nitrogen oxide (NOx) and ammonia on iron oxide-titanium oxide catalyst[J]. Journal of Physical Chemistry, 1981, 85(26): 276-287. |
29 | TUENTER G, LEEUWEN W F V, SNEPVANGERS L. Kinetics and mechanism of the NOx reduction with NH3 on V2O5-WO3-TiO2 catalyst[J]. Industrial & Engineering Chemistry Product Research & Development, 2004, 25(4): 633-636. |
30 | NOTOYA F, CAILI S A, SASAOKA E, et al. Effect of SO2 on the low-temperature selective catalytic reduction of nitric oxide with ammonia over TiO2, ZrO2, and Al2O3[J]. Ind.Eng.Chem.Res., 2001, 40(17): 3732-3739. |
31 | KOEBEL M, ELSENER A M, MADIA G. Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperatures[J]. Industrial & Engineering Chemistry Research, 2001, 40(1): 52-59. |
32 | 郑伟杰, 郑玉婴, 陈健, 等. 纳米花状MnO2/PPS功能复合滤料的制备及其NH3-SCR脱硝性能研究[J]. 高分子学报, 2017(11): 1806-1815. |
ZHENG Weijie, ZHENG Yuying, CHEN Jian, et al. Fabrication of nf-MnO2/PPS functional composites for selective reduction of NOx with NH3[J]. Acta Polymerica Sinica, 2017(11): 1806-1815. | |
33 | 付彬彬, 郑玉婴, 陈健, 等. 氧化还原沉淀法制备Mn-Ce-Co-Ox/PPS滤料及其低温SCR活性[J]. 燃料化学学报, 2017, 45(6): 731-739. |
FU Binbin, ZHENG Yuying, CHEN Jian, et al. Preparation of the Mn-Ce-Co-Ox/PPS filter material by a redox method and its activity in the low-temperature selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 731-739. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[5] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[6] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[7] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[8] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[9] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[10] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[11] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[12] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[13] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[14] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[15] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |