化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3194-3206.DOI: 10.16085/j.issn.1000-6613.2018-1606
收稿日期:
2018-08-06
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
方涛
作者简介:
张帅(1992—),男,硕士研究生,研究方向为静电纺丝技术。E-mail:<email>shaizhangpg2016@stu.xjtu.edu.cn</email>。
基金资助:
Shuai ZHANG(),Siyao WANG,Zhao JIANG,Tao FANG()
Received:
2018-08-06
Online:
2019-07-05
Published:
2019-07-05
Contact:
Tao FANG
摘要:
氨硼烷由于其氢质量分数高达19.6%,在环境条件下稳定性高,无毒,在普通溶剂中溶解度高,因此被视为是一种极具潜力的固体储氢材料。但是传统纳米金属催化剂颗粒容易出现团聚、损失、二次污染、难回收的问题。高压静电纺丝技术将微纳米纤维作为纳米金属颗粒的载体,制备出的催化剂可以有效弥补传统纳米金属催化剂的缺点。本文从静电纺丝技术、纳米纤维的分类、催化剂的分类3个角度重点介绍了静电纺丝法制备应用于氨硼烷水解的纳米催化剂。在纳米纤维的分类中详细介绍了应用电纺技术制备不同种类纤维的制作步骤和关键技术点;在催化剂的分类中全面详细介绍了贵金属以及非贵金属催化剂的制备工艺,对比两种催化剂制备的优缺点,总结出了催化剂颗粒以及载体的选择依据。最后分别提出通过技术设备的升级优化、催化颗粒与载体的合理设计、“三步”化学反应的方法来解决电纺技术效率低、催化性能差、氨硼烷再生难的问题。
中图分类号:
张帅, 王斯瑶, 姜召, 方涛. 静电纺丝技术在氨硼烷水解脱氢催化剂制备中的应用[J]. 化工进展, 2019, 38(07): 3194-3206.
Shuai ZHANG, Siyao WANG, Zhao JIANG, Tao FANG. Application of electrospinning technology in the preparation of dehydrogenation catalysts for ammonia borane hydrolysis[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3194-3206.
序号 | 催化剂 | TOF/mol H2·min -1·mol(贵金属)-1 | E a/kJ·mol | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|
1 | Rh/CeO2 | 2010 | 42.6 | — | [ |
2 | Ru/纳金刚石 | 229 | 50.7 | 3.7 | [ |
3 | Ru/HAp | 137 | 58 | 4.7±0.7 | [ |
4 | Ru0/X-NW | 135 | 77 | 4.4±0.4 | [ |
5 | Rh/g-Al2O3 | 128.2 | 21 | 2.5 | [ |
6 | Rh0/纳米SiO2 | 112 | — | — | [ |
7 | Pt/C | 111 | — | 1.9 | [ |
8 | PAN/Pd-Pt | 51.9 | — | — | [ |
9 | Pd/MIL-101 | 45 | — | 1.8±0.4 | [ |
10 | Pd/CeO2 | 29 | 68 | — | [ |
11 | RGO-Pd | 26.3 | 40 | — | [ |
12 | Pd-HAP | 8.3 | 55 | 3.3±0.8 | [ |
13 | Pd/纳米TiO2 | 7.1 | — | — | [ |
14 | Pd/纳米SiO2 | 6.6 | — | — | [ |
15 | Ag/Pd@PAN NFs | 6.29 | — | 5~20 | [ |
16 | RGO/Pd | 6.25 | 51 | 4 | [ |
17 | Pd/PPy@PAN NFs | 3.9 | 33.5 | 5 | [ |
18 | Pd/纳米Al2O3 | 3.5 | — | — | [ |
表1 以贵金属为基础的氨硼烷水解脱氢催化剂的催化活性
序号 | 催化剂 | TOF/mol H2·min -1·mol(贵金属)-1 | E a/kJ·mol | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|
1 | Rh/CeO2 | 2010 | 42.6 | — | [ |
2 | Ru/纳金刚石 | 229 | 50.7 | 3.7 | [ |
3 | Ru/HAp | 137 | 58 | 4.7±0.7 | [ |
4 | Ru0/X-NW | 135 | 77 | 4.4±0.4 | [ |
5 | Rh/g-Al2O3 | 128.2 | 21 | 2.5 | [ |
6 | Rh0/纳米SiO2 | 112 | — | — | [ |
7 | Pt/C | 111 | — | 1.9 | [ |
8 | PAN/Pd-Pt | 51.9 | — | — | [ |
9 | Pd/MIL-101 | 45 | — | 1.8±0.4 | [ |
10 | Pd/CeO2 | 29 | 68 | — | [ |
11 | RGO-Pd | 26.3 | 40 | — | [ |
12 | Pd-HAP | 8.3 | 55 | 3.3±0.8 | [ |
13 | Pd/纳米TiO2 | 7.1 | — | — | [ |
14 | Pd/纳米SiO2 | 6.6 | — | — | [ |
15 | Ag/Pd@PAN NFs | 6.29 | — | 5~20 | [ |
16 | RGO/Pd | 6.25 | 51 | 4 | [ |
17 | Pd/PPy@PAN NFs | 3.9 | 33.5 | 5 | [ |
18 | Pd/纳米Al2O3 | 3.5 | — | — | [ |
序号 | 催化剂 | TOF/mol H2·min -1·mol(贵金属)-1 | E a/kJ·mol | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|
1 | Co-NF | 147 | 41.59 | 32~46 | [ |
2 | Co/MIL-101-1-U | 51.4 | 31.3 | — | [ |
3 | Co/PEI-GO | 39.9 | 28.2 | 2.6 | [ |
4 | Ni0/CoFe2O4 | 38.3 | 62.7 | — | [ |
5 | Co-TiC@CNFs | 32 | 26.19 | 10~40 | [ |
6 | Ni@MSC-30 | 30.7 | — | 6.3 | [ |
7 | 200 ALD cycle Ni/CNT | 26.2 | 32.3 | 5.6 | [ |
8 | Co-CrC/CNFs | 25.78 | 24.2 | — | [ |
9 | PEI-GO3D/Co | 18.5 | 27.4 | — | [ |
10 | Co/石墨烯 | 13.9 | 37.72 | — | [ |
11 | Cu-NF | 11 | 36.7 | — | [ |
12 | Ni/C | 8.8 | 28 | 3.2 | [ |
13 | Ni-NF | 8 | 35.54 | — | [ |
14 | Ni0/PDA-CoFe2O4 | 7.6 | 50.8 | 12.3 | [ |
15 | Co/NPCNW | 7.29 | 25.4 | 3.5 | [ |
16 | Co0/CeO2 | 7 | 43 | — | [ |
17 | Co@NC700 | 5.6 | 31 | 9 | [ |
18 | NiO/SiO2 -CoFe2O4 | 5.3 | 68.2 | 21.7 | [ |
19 | Ni/分子筛 | 5 | 54.4 | 3.9±0.9 | [ |
20 | RGO-Cu | 3.61 | 38.2 | — | [ |
21 | Cu/SiO2 | 3.24 | 36 | 2 | [ |
22 | Cu0/CeO2 | 1.5 | — | — | [ |
23 | Co-B@ TiO2 | — | 16.54 | [ | |
24 | NiCu @ CNFs | — | 28.9 | [ |
表2 非贵金属的氨硼烷水解脱氢催化剂的催化活性
序号 | 催化剂 | TOF/mol H2·min -1·mol(贵金属)-1 | E a/kJ·mol | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|
1 | Co-NF | 147 | 41.59 | 32~46 | [ |
2 | Co/MIL-101-1-U | 51.4 | 31.3 | — | [ |
3 | Co/PEI-GO | 39.9 | 28.2 | 2.6 | [ |
4 | Ni0/CoFe2O4 | 38.3 | 62.7 | — | [ |
5 | Co-TiC@CNFs | 32 | 26.19 | 10~40 | [ |
6 | Ni@MSC-30 | 30.7 | — | 6.3 | [ |
7 | 200 ALD cycle Ni/CNT | 26.2 | 32.3 | 5.6 | [ |
8 | Co-CrC/CNFs | 25.78 | 24.2 | — | [ |
9 | PEI-GO3D/Co | 18.5 | 27.4 | — | [ |
10 | Co/石墨烯 | 13.9 | 37.72 | — | [ |
11 | Cu-NF | 11 | 36.7 | — | [ |
12 | Ni/C | 8.8 | 28 | 3.2 | [ |
13 | Ni-NF | 8 | 35.54 | — | [ |
14 | Ni0/PDA-CoFe2O4 | 7.6 | 50.8 | 12.3 | [ |
15 | Co/NPCNW | 7.29 | 25.4 | 3.5 | [ |
16 | Co0/CeO2 | 7 | 43 | — | [ |
17 | Co@NC700 | 5.6 | 31 | 9 | [ |
18 | NiO/SiO2 -CoFe2O4 | 5.3 | 68.2 | 21.7 | [ |
19 | Ni/分子筛 | 5 | 54.4 | 3.9±0.9 | [ |
20 | RGO-Cu | 3.61 | 38.2 | — | [ |
21 | Cu/SiO2 | 3.24 | 36 | 2 | [ |
22 | Cu0/CeO2 | 1.5 | — | — | [ |
23 | Co-B@ TiO2 | — | 16.54 | [ | |
24 | NiCu @ CNFs | — | 28.9 | [ |
1 | ZHAN W , ZHU Q L , XU Q .Dehydrogenation of ammonia borane by metal nanoparticle catalysts[J].ACS Catalysis, 2016, 6(10): 6892-6905. |
2 | SUH M P, PARK H J , PRASAD T K , et al .Hydrogen storage in in metal-organic frameworks[J]. Chemical Reviews, 2011, 112(2): 782-835. |
3 | BULUT A , YURDERI M , ERTAS I E , et al .Carbon dispersed copper-cobalt alloy nanoparticles: a cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane[J]. Applied Catalysis B: Environmental, 2016, 180(3): 121-129. |
4 | JAIN I P , JAIN P , JAIN A .Novel hydrogen storage materials: a review of lightweight complex hydrides[J].Journal of Alloys & Compounds, 2010, 503(2): 303-339. |
5 | AKBAYRAK S , TANEROĞLU O , ÖZKAR S .Nanoceria supported cobalt(0) nanoparticles: a magnetically separable and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J].New Journal of Chemistry, 2017, 41(14): 6546-6552. |
6 | TAMBOLI A H , CHAUGULE A A , SHEIKH F A , et al .Synthesis and application of CeO2–NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis[J].Energy, 2015, 89: 568-575. |
7 | ZHONG D C , ARANISHI K , SINGH A K , et al .The synergistic effect of Rh-Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage[J]. Chemical Communications, 2012, 48(98): 11945-11947. |
8 | YANG L , SU J , MENG X , et al . In situ synthesis of graphene supported Ag@CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane[J].Journal of Materials Chemistry A, 2013, 1(34): 10016-10023. |
9 | YAN J M , ZHANG X B , HAN S , et al .Magnetically recyclable Fe-Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere[J].Journal of Power Sources, 2009, 194(1):478-481. |
10 | YOUSEF A , BARAKAT N A M , EL-NEWEHY M H , et al .Catalytic hydrolysis of ammonia borane for hydrogen generation using Cu(0) nanoparticles supported on TiO2 nanofibers[J].Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2015, 470: 194-201. |
11 | BROCKMAN A , ZHENG Y , GORE J .A study of catalytic hydrolysis of concentrated ammonia borane solutions[J].International Journal of Hydrogen Energy, 2010, 35(14): 7350-7356. |
12 | SUN W , LU X , TONG Y , et al .A one-pot synthesis of a highly dispersed palladium/polypyrrole/polyacrylonitrile nanofiber membrane and its recyclable catalysis in hydrogen generation from ammonia borane[J].Journal of Materials Chemistry A, 2014, 19(2): 6740-6746. |
13 | NADAGOUDA M N , VARMA R S .A greener synthesis of core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C[J].Crystal Growth & Design, 2007, 7(12): 2582-2587. |
14 | TONBUL Y , AKBAYRAK S , ÖZKAR S .Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J].International Journal of Hydrogen Energy, 2016, 41(26): 11154-11162. |
15 | XU Q , CHANDRA M .A portable hydrogen generation system: catalytic hydrolysis of ammonia-borane[J].Journal of Alloys & Compounds, 2007, 446/447(22): 729-732. |
16 | CHANDRA M , XU Q .Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J].Journal of Power Sources, 2007, 168(1): 135-142. |
17 | SHINJOH H .Noble metal sintering suppression technology in three-way catalyst: automotive three-way catalysts with the noble metal sintering suppression technology based on the support anchoring effect[J].Catalysis Surveys from Asia, 2009, 13(3): 184-190. |
18 | WANG Z Z , ZHAI S R , ZHAI B , et al .One-step green synthesis of multifunctional Fe3O4/Cu nanocomposites toward efficient reduction of organic dyes[J].European Journal of Inorganic Chemistry, 2015(10): 1692-1699. |
19 | ZHAO D , FENG J , HUO Q , et al .Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J].Science, 1998, 279(5350): 548-552. |
20 | AND D L, XIA Y .Fabrication of titania nanofibers by electrospinning[J].Proceedings of SPIE:The International Society for Optical Engineering, 2003, 3(4): 555-560. |
21 | 丁源维, 王騊, 姚菊明, 等 .静电纺制备TiO2/PVA复合纳米纤维及其光催化性能研究[J].浙江理工大学学报, 2013, 30(1): 31-35. |
DING Yuanwei , WANG Tao , YAO Juming , et al .Photocatalytic performance investigation of TiO2/PVA nanofibers prepared by electrospinning[J]. Journal of Zhejiang Institute of Science and Technology, 2013, 30(1): 31-35. | |
22 | MAO Z , XIE R , FU D , et al .PAN supported Ag-AgBr@Bi20 TiO32 electrospun fiber mats with efficient visible light photocatalytic activity and antibacterial capability[J].Separation & Purification Technology, 2017, 176: 277-286. |
23 | ZHANG L , ZHANG Q , XIE H , et al .Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis[J].Applied Catalysis B: Environmental, 2016, 201: 470-478. |
24 | HONG S , HOU M , ZHANG H , et al .A high-performance PEM fuel cell with ultralow platinum electrode via electrospinning and underpotential deposition[J]. Electrochimica Acta, 2017, 245: 403-409. |
25 | CHANDRAWATI R , MTJ O, TCC M, et al .Enzyme prodrug therapy engineered into electrospun fibers with embedded liposomes for controlled, localized synthesis of therapeutics[J]. Advanced Healthcare Materials, 2017, 6(17): 1700385. |
26 | WU D , FENG Q , XU T , et al .Electrospun blend nanofiber membrane consisting of polyurethane, amidoxime polyarcylonitrile, and β-cyclodextrin as high-performance carrier/support for efficient and reusable immobilization of laccase[J]. Chemical Engineering Journal, 2018, 331: 517-526. |
27 | YU D , BAI J , WANG J , et al .Assembling formation of highly dispersed Pd nanoparticles supported 1D carbon fiber electrospun with excellent catalytic active and recyclable performance for Suzuki reaction[J].Applied Surface Science, 2017, 399: 185-191. |
28 | DEITZEL J M , KLEINMEYER J D , HIRVONEN J K , et al .Controlled deposition of electrospun poly(ethylene oxide) fibers[J].Polymer, 2001, 42(19): 8163-8170. |
29 | RENEKER D H , YARIN A L , FONG H , et al .Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J].J. Appl. Phys., 2000, 87(9): 4531-4547. |
30 | 汪成伟, 邵珠帅, 王飞龙, 等 .静电纺丝纤维应用的研究进展[J].微纳电子技术, 2014, 51(12): 770-775. |
WANG Chengwei , SHAO Zhushuai , WANG Feilong , et al .Research progress of the application of the electrostatic spinning fiber[J].Micronanoelectronic Technology, 2014, 51(12): 770-775. | |
31 | THERON S A , YARIN A L , ZUSSMAN E , et al .Multiple jets in electrospinning: experiment and modeling[J].Polymer, 2005, 46(9):2889-2899. |
32 | KIM G H, CHO Y S, WAN D K .Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode[J].European Polymer Journal, 2006, 42(9): 2031-2038. |
33 | TOMASZEWSKI W , SZADKOWSKI M .Investigation of electrospinning with the use of a multi-jet electrospinning head[J].Fibres & Textiles in Eastern Europe, 2005, 13(4):22-26. |
34 | 贾志东, 杨颖, 关志成, 等 .高效多针静电纺丝喷丝装置: CN 1962966A[P]. 2007-05-16. |
JIA Zhidong , YANG Ying , GUAN Zhicheng , et al . High efficiency multi needle electrostatic spinning device: CN1962966A[P]. 2007-05-16. | |
35 | 杨恩龙, 史晶晶 .多喷头静电纺丝研究进展[J].产业用纺织品, 2009, 27(9): 1-4. |
YANG Enlong, SHI Jingjing, Presentation of research on electrospinning with multiple nozzles[J].Technical Textiles, 2009, 27(9): 1-4. | |
36 | JIRSAK O , SANETRNIK F , LUKAS D , et al .A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method: EP 1673493 B1[P].2009-07-08. |
37 | DEITZEL J M , KLEINMEYER J D , HIRVONEN J K , et al .Controlled deposition of electrospun poly(ethylene oxide) fibers[J].Polymer, 2001, 42(19): 8163-8170. |
38 | THERON A , ZUSSMAN E , YARIN A L .Electrostatic field-assisted alignment of electrospun nanofibres[J].Nanotechnology, 2001, 12(3): 384. |
39 | HUANG Z M , ZHANG Y Z , KOTAKI M , et al .A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J].Composites Science & Technology, 2003, 63(15): 2223-2253. |
40 | LI D , WANG Y , XIA Y .Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J].Nano Letters, 2003, 3(8): 1167-1171. |
41 | KIM J S, RENEKER D H .Polybenzimidazole nanofiber produced by electrospinning[J]. Polymer Engineering & Science,1999, 39(5): 849-854. |
42 | SMIT E , BŰTTNER U , SANDERSON R D .Continuous yarns from electrospun fibers[J].Polymer, 2005, 46(8): 2419-2423. |
43 | DALTON P D , KLEE D , MÖLLER M .Electrospinning with dual collection rings[J].Polymer, 2005, 46(3): 611-614. |
44 | YOUSEF A , BARAKAT N A M , EL-NEWEHY M H , et al .Catalytic hydrolysis of ammonia borane for hydrogen generation using Cu(0) nanoparticles supported on TiO2 nanofibers[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 194-201. |
45 | YOUSEF A , BARAKAT N A M , EL-NEWEHY M , et al .Chemically stable electrospun NiCu nanorods@carbon nanofibers for highly efficient dehydrogenation of ammonia borane[J].International Journal of Hydrogen Energy, 2012, 37(23): 17715-17723. |
46 | BARAKAT N A M .Effective Co-Mn-O nanofibers for ammonia borane hydrolysis[J].Materials Letters, 2013, 106: 229-232. |
47 | AL-ENIZI A M , BROOKS R M , ABUTALEB A , et al .Electrospun carbon nanofibers containing Co-TiC nanoparticles-like superficial protrusions as a catalyst for H2 gas production from ammonia borane complex[J].Ceramics International, 2017, 43(17): 15735-15742. |
48 | YOUSEF A , BROOKS R M , EL-HALWANY M M , et al .Electrospun CoCr7 C3-supported C nanofibers: effective, durable, and chemically stable catalyst for H2 gas generation from ammonia borane[J].Molecular Catalysis, 2017, 434: 32-38. |
49 | LI Z Y , ZHANG H N , ZHENG W , et al .Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers[J].Journal of the American Chemical Society, 2008, 130(15): 5036-5037. |
50 | FILIZ B C , FIGEN A K .Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency[J].International Journal of Hydrogen Energy, 2016, 41(34): 15433-15442. |
51 | NIRMALA R , KIM H Y, YI C , et al .Electrospun nickel doped titanium dioxide nanofibers as an effective photocatalyst for the hydrolytic dehydrogenation of ammonia borane[J].International Journal of Hydrogen Energy, 2012, 37(13):10036-10045. |
52 | YOUSEF A , BARAKAT N A M , KIM H Y .Electrospun Cu-doped titania nanofibers for photocatalytic hydrolysis of ammonia borane[J].Applied Catalysis A: General, 2013, 467: 98-106. |
53 | BARAKAT N A M , MOTLAK M , TAHA A , et al .Super effective Zn-Fe-doped TiO2 nanofibers as photocatalyst for ammonia borane hydrolysis[J].International Journal of Green Energy, 2015, 13(7): 642-649. |
54 | TONG Y , LU X , SUN W , et al .Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane[J].Journal of Power Sources, 2014, 261: 221-226. |
55 | ZHANG Z , JIANG Y , CHI M , et al .Electrospun polyacrylonitrile nanofibers supported alloyed Pd-Pt nanoparticles as recyclable catalysts for hydrogen generation from the hydrolysis of ammonia borane[J].RSC Advances, 2015, 5(114): 94456-94461. |
56 | SUN D , MAZUMDER V , Ö METIN , et al . Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles[J]. ACS Nano, 2011, 5(8): 6458-6464. |
57 | PANTHI G , BARAKAT N A M , ABDELRAZEK K K , et al .Encapsulation of CoS nanoparticles in PAN electrospun nanofibers: effective and reusable catalyst for ammonia borane hydrolysis and dyes photodegradation[J].Ceramics International, 2013, 39(2): 1469-1476. |
58 | RYSCHKEWITSCH G E . Amine borane I.kinetics of acid hydrolysis of trimethylamine borane[J]. Journal of the American Chemical Society, 1960, 82(13): 3290-3294. |
59 | KELLY H C , MARCHELLI F R , GIUSTO M B . The kinetics and mechanism of solvolysis of amineboranes[J].Inorganic Chemistry, 1964, 3(3): 431-437. |
60 | CHIRIAC R , TOCHE F , DEMIRCI U B , et al .Ammonia borane decomposition in the presence of cobalt halides[J].International Journal of Hydrogen Energy, 2011, 36(20): 12955-12964. |
61 | TOCHE F , CHIRIAC R , DEMIRCI U B , et al .Ammonia borane thermolytic decomposition in the presence of metal (Ⅱ) chlorides[J].International Journal of Hydrogen Energy, 2012, 37(8): 6749-6755. |
62 | LI Y , FANG F , SONG Y , et al .Enhanced dehydrogenation of ammonia borane by reaction with alkaline earth metal chlorides[J].International Journal of Hydrogen Energy, 2012, 37(5): 4274-4279. |
63 | AKBAYRAK S , TONBUL Y , ÖZKAR S .Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J].Applied Catalysis B: Environmental, 2016, 198: 162-170. |
64 | FAN G , LIU Q , TANG D , et al .Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2016, 41(3):1542-1549. |
65 | MANNA J , AKBAYRAK S , ÖZKAR S .Palladium(0) nanoparticles supported on polydopamine coated Fe3O4 as magnetically isolable, highly active and reusable catalysts for hydrolytic dehydrogenation of ammonia borane[J].RSC Advances, 2016, 6(104): 102035-102042. |
66 | MANNA J , AKBAYRAK S , ÖZKAR S .Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane[J]. Applied Catalysis B: Environmental, 2017, 208: 104-115. |
67 | AKBAYRAK S , KAYA M , VOLKAN M , et al . Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: a highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane[J]. Applied Catalysis B: Environmental, 2014, 147(8): 387-393. |
68 | DAI H , SU J , KAI H, et al . Pd nanoparticles supported on MIL-101 as high-performance catalysts for catalytic hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2014, 39(10): 4947-4953. |
69 | TONBUL Y , AKBAYRAK S , ÖZKAR S .Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J].International Journal of Hydrogen Energy, 2016, 41(26): 11154-11162. |
70 | KILIÇ B , ŞENCANLI S , Ö METIN .Hydrolytic dehydrogenation of ammonia borane catalyzed by reduced graphene oxide supported monodisperse palladium nanoparticles: high activity and detailed reaction kinetics[J].Journal of Molecular Catalysis A: Chemical, 2012, 361/362: 104-110. |
71 | RAKAP M , ÖZKAR S .Hydroxyapatite-supported palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J].International Journal of Hydrogen Energy, 2011, 36(12): 7019-7027. |
72 | XI P , CHEN F , XIE G , et al .Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J].Nanoscale, 2012, 4(18): 5597-5601. |
73 | AKBAYRAK S , ERDEK P , ÖZKAR S .Hydroxyapatite supported ruthenium(0) nanoparticles catalyst in hydrolytic dehydrogenation of ammonia borane: insight to the nanoparticles formation and hydrogen evolution kinetics[J].Applied Catalysis B: Environmental, 2013, 142: 187-195. |
74 | AKBAYRAK S , OZKAR S .Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane[J].Dalton Trans, 2013, 43(4): 1797-1805. |
75 | DURAP F , ZAHMAKıRAN M , ÖZKAR S .Water soluble laurate-stabilized rhodium(0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane[J].Applied Catalysis A: General, 2009, 369(1/2): 53-59. |
76 | YOUSEF A , BROOKS R M , EL-HALWANY M M , et al .A novel and chemical stable Co-B nanoflakes-like structure supported over titanium dioxide nanofibers used as catalyst for hydrogen generation from ammonia borane complex[J].International Journal of Hydrogen Energy, 2016, 41(1): 285-293. |
77 | LIU P , GU X , KANG K , et al .Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J].ACS Applied Materials & Interfaces, 2017, 9(12): 10759-10767. |
78 | HU J , CHEN Z , LI M , et al .Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane[J].ACS Applied Materials & Interfaces, 2014, 6(15): 13191. |
79 | MANNA J , AKBAYRAK S , ÖZKAR S .Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane[J].J. Colloid Interface Sci., 2017, 508: 359-368. |
80 | LI P Z , AIJAZ A , XU Q .Highly dispersed surfactant-free nickel nanoparticles and their remarkable catalytic activity in the hydrolysis of ammonia borane for hydrogen generation[J].Angewandte Chemie, 2012, 51(27): 6753. |
81 | ZHANG J , CHEN C , YAN W , et al .Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane[J].Catalysis Science & Technology, 2016, 6(7): 2112-2119. |
82 | LU H , LI M , HU J .A stable, efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane[J].Catalysis Science & Technology, 2016, 6(19): 7186-7192. |
83 | YANG L , CAO N , CHENG D , et al .Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane[J].Materials Letters, 2014, 115(2): 113-116. |
84 | METIN O , MAZUMDER V , OZKAR S , et al .Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane[J].Journal of the American Chemical Society, 2010, 132(5): 1468-1469. |
85 | ZHOU L , MENG J , LI P , et al .Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane[J].Materials Horizons, 2017, 4(2): 268-273. |
86 | WANG H , ZHAO Y , CHENG F , et al . Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane[J].Catalysis Science & Technology, 2016, 6(10): 3443-3448. |
87 | ZAHMAKIRAN M , AYVALI T , AKBAYRAK S , et al .Zeolite framework stabilized nickel(0) nanoparticles: active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride[J].Catalysis Today, 2011, 170(1): 76-84. |
88 | YANG Y , LU Z H , HU Y , et al .Facile in situ synthesis of copper nanoparticles supported on reduced graphene oxide for hydrolytic dehydrogenation of ammonia borane[J]. RSC Advances, 2014, 4(27):13749-13752. |
89 | YAO Q , LU Z H , ZHANG Z , et al .One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J].Scientific Reports, 2014, 4(4): 7597. |
90 | BARAKAT N A M .Catalytic and photo hydrolysis of ammonia borane complex using Pd-doped Co nanofibers[J].Applied Catalysis A: General, 2013, 451: 21-27. |
91 | YOUSEF A , BROOKS R M , EL-HALWANY M M , et al .CuO /S-doped TiO2 nanoparticles-decorated carbon nanofibers as novel and efficient photocatalyst for hydrogen generation from ammonia borane[J]. Ceramics International, 2016, 42(1): 1507-1512. |
92 | MU J , SHAO C , GUO Z , et al .High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures[J].ACS Applied Materials & Interfaces, 2011, 3(2): 590-596. |
93 | SUTTON A D , BURRELL A K , DIXON D A , et al . Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia[J].Science, 2011, 331(6023): 1426-1429. |
94 | SUMMERSCALES O T , GORDON J C . Regeneration of ammonia borane from spent fuel materials[J].Dalton Transactions, 2013, 42(28): 10075-10084. |
95 | Christian RELLER , MERTENS Florian O . A self-contained regeneration scheme for spent ammonia borane based on the catalytic hydrodechlorination of BCl3 [J]. Angewandte Chemie International Edition, 2012, 51(47): 11731-11735. |
[1] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[2] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[3] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[4] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[5] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[6] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[7] | 王蕴青, 杨国锐, 延卫. 过渡金属磷化物的改性方法及其在电化学析氢中的应用[J]. 化工进展, 2023, 42(7): 3532-3549. |
[8] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[9] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[10] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[11] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
[12] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[13] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[14] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[15] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |