1 |
LI G , WANG B , WANG H , et al . Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH3-SCR[J]. Catalysis Communications, 2018, 108:82-87.
|
2 |
李晨露,唐晓龙,易红宏,等 . Mn基低温SCR催化剂的抗H2O、抗SO2研究进展[J].化工进展,2017,36(3):934-943.
|
|
LI C L , TANG X L , YI H H , et al . Research progress on H2O resistance and SO2 resistance of Mn based low-temperature SCR catalyst[J]. Chemical Industry and Engineering Progress, 2017,36(3):934-943.
|
3 |
WANG J , QIU Y , HE S , et al . Investigating the driving forces of NO x generation from energy consumption in China[J]. Journal of Cleaner Production, 2018,184:836-846.
|
4 |
BARREAU M , TAROT M L , DUPREZ D , et al . Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH3 over silver supported catalyst[J]. Applied Catalysis B: Environmental, 2018,220:19-30.
|
5 |
ZHANG MH , HUANG B J , JIANG H X , et al . Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NO x [J]. Chinese Journal of Chemical Engineering, 2017,25(12):1695-1705.
|
6 |
郭凤,余剑, Tuyet-Suong TRAN , 等 .溶胶-凝胶原位合成钒钨钛催化剂及NH3-SCR性能[J].化工学报,2017,68(10):3747-3754.
|
|
GUO F , YU J , T-S TRAN , et al . In-situ synthesis of vanadium, tungsten, titanium and NH3-SCR by sol-gel catalyst[J]. CIESC J.,2017,68(10):3747-3754.
|
7 |
ODENBRAND C U I . CaSO4 deactivated V2O5-WO3/TiO2 SCR catalyst for a diesel power plant. characterization and simulation of the kinetics of the SCR reactions[J]. Applied Catalysis B: Environmental,2018,234:365-377.
|
8 |
黄金,仲兆平,朱林,等 .锰铈改性钒钨钛中低温SCR催化剂脱硝及抗水抗硫性能[J].化工进展,2018,37(6):2242-2248.
|
|
HUANG J , ZHONG Z P , ZHU L , et al . Denitrification, water resistance Engineering sulfur resistance of low temperature SCR catalyst modified by Mn-cerium in vanadium, tungsten and titanium[J]. Chemical Industry and Engineering Progress, 2018,37(6):2242-2248.
|
9 |
KOWALCZYK A , ŚWIĘS A , GIL B, et al . Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method[J]. Applied Catalysis B: Environmental, 2018,237:927-937.
|
10 |
WÖRLE-KNIRSCH J M , KERN K , SCHLEH C , et al . Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells[J]. Environmental Science & Technology, 2007,41(1):331-336.
|
11 |
马景琦 . SCR催化剂的研究进展[J]. 科技资讯,2017(10):112-113.
|
|
MA J Q . Research progress of SCR catalyst[J]. Science and Technology Information, 2017(10):112-113.
|
12 |
LI M , GUO R , HU C , et al . The enhanced resistance to K deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by the modification with P[J]. Applied Surface Science, 2018,436:814-822.
|
13 |
HU X , SHI Q , ZHANG H , et al . NH3-SCR performance improvement over Mo modified Mo(x)-MnO x nanorods at low temperatures[J]. Catalysis Today, 2017,297:17-26.
|
14 |
史德明,陈光,张松,等 . 一种具有强抗硫抗水性能的低温脱硝催化剂及其制备方法: CN107088433A[P]. 2017-08-25.
|
|
SHI D M , CHEN G , ZHANG S , et al . A low temperature denitrification catalyst with strong sulfur and water resistance and its preparation method:CN107088433A[P]. 2017-08-25.
|
15 |
张序,李建军,刘琪琪,等 . 炭基磷钨酸催化剂的脱硝性能[J]. 环境工程学报,2016(2):799-804.
|
|
ZHANG X , LI J J , LIU Q Q , et al . Denitrification performance of carbon-based phosphotungstic acid catalyst[J]. Chinese Journal of Environmental Engineering, 2016(2):799-804.
|
16 |
SUBBA R B V , NARASIMHULU G , SUBBA L P , et al . Phosphomolybdic acid: a highly efficient solid acid catalyst for the synthesis of trans-4,5-disubstituted cyclopentenones[J]. Tetrahedron Letters, 2012,53(14):1776-1779.
|
17 |
BHORODWAJ S K , DUTTA D K . Activated clay supported heteropoly acid catalysts for esterification of acetic acid with butanol[J]. Applied Clay Science, 2011, 53(2):347-352.
|
18 |
REN Z , TENG Y , ZHAO L , et al . Keggin-tungstophosphoric acid decorated Fe2O3 nanoring as a new catalyst for selective catalytic reduction of NO x with ammonia[J]. Catalysis Today, 2017,297:36-45.
|
19 |
WENG X , DAI X , ZENG Q , et al . DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3 [J]. Journal of Colloid and Interface Science, 2016,461:9-14.
|
20 |
田青青 . 杂多酸负载二氧化铈的NO x 选择性催化还原应用研究[D]. 杭州:浙江大学,2014.
|
|
TIAN Q Q . Application of NO x selective catalytic reduction of cerium dioxide supported by heteropoly acid[D]. Hangzhou: Zhejiang University,2014.
|
21 |
HALASZ I , BRENNER A , SIMON K Y , et al . Catalytic activity and selectivity of H-ZSM5 for the reduction of nitric oxide by propane in the presence of oxygen[J]. Journal of Catalysis,1996, 161: 359-372.
|
22 |
李晨旭 . Cu改性V/WTi催化剂低温NH3-SCR性能研究[D]. 天津:天津大学,2015.
|
|
LI C X . Study on NH3-SCR properties of Cu modified V/WTi catalyst at low temperature[D]. Tianjin:Tianjin University, 2015.
|
23 |
WU S , LI H , LI L , et al . Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2-TiO2 catalyst[J]. Fuel, 2015,159:876-882.
|
24 |
CHUAI H , ZHOU D , ZHU X , et al . Characterization of V2O5/MoO3 composite photocatalysts prepared via electrospinning and their photodegradation activity for dimethyl phthalate[J]. Chinese Journal of Catalysis, 2015,36:2194-2202.
|
25 |
SI Z , WENG D , WU X , et al . Structure, acidity and activity of CuO x /WO x -ZrO2 catalyst for selective catalytic reduction of NO by NH3 [J]. Journal of Catalysis, 2010,271(1):43-51.
|
26 |
KIM M H, PARK S W . Selective reduction of NO by NH3 over Fe-zeolite-promoted V2O5-WO3/TiO2-based catalysts: great suppression of N2O formation and origin of NO removal activity loss[J]. Catalysis Communications, 2016,86:82-85.
|
27 |
任旭婷 . Mn-Ce/TiO2低温脱硝催化剂的制备及改性研究[D]. 北京:中国石油大学(北京),2016.
|
|
REN X T . Preparation and modification of Mn-Ce /TiO2 low temperature denitrification catalyst[D]. Beijing: China University of Petroleum (Beijing), 2016.
|
28 |
陈勇 . TiO2负载Ce改性VPO催化剂的低温SCR脱硝性能研究[D]. 马鞍山:安徽工业大学,2017.
|
|
CHEN Y . Study on low-temperature SCR denitrification performance of TiO2 supported Ce modified VPO catalyst[D]. Maanshan: Anhui University of Technology, 2017.
|
29 |
DEVIKALA S , KAMARAJ P , ARTHANAREESWARI M . AC conductivity studies of PMMA/TiO2 composites[J].Materials Today:Proceedings, 2018,5(2):8678-8682.
|
30 |
YANG R , HUANG H , CHEN Y , et al . Performance of Cr-doped vanadia/titania catalysts for low-temperature selective catalytic reduction of NO x with NH3 [J]. Chinese Journal of Catalysis, 2015,36(8):1256-1262.
|
31 |
万马,张先龙,郭亚晴,等 . 锰负载量对MnO x /PG 催化剂低温SCR反应的影响[J]. 环境工程学报,2016,10(10):5749-5754.
|
|
WAN M , ZHANG X L , GUO Y Q , et al . Effect of manganese loading on low temperature SCR reaction of MnO x /PG catalyst[J]. Journal of Environmental Engineering, 2016, 10(10):5749-5754.
|
32 |
PANG L , FAN C , SHAO L , et al . The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chemical Engineering Journal, 2014, 253:394-401.
|
33 |
YUAN J , YANG M , HU Q , et al . Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols[J]. Journal of CO2 Utilization, 2018,24:334-340.
|
34 |
GUAN B , LIN H , ZHU L , et al . Selective catalytic reduction of NO x with NH3 over Mn, Ce substitution Ti0.9V0.1O2- δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method[J]. The Journal of Physical Chemistry C, 2011, 115(26):12850-12863.
|
35 |
王大文, 钟顺和 . 二氧化碳与丙烯直接合成甲基丙烯酸用CuPMo/TiO2催化剂的研究[J]. 催化学报, 2003, 24(9):705-710.
|
|
WANG D W , ZHONG S H . CuPMo/TiO2 catalyst for the direct synthesis of acrylic acid from carbon dioxide and propylene[J]. Journal of Catalysis, 2003, 24(9):705-710.
|
36 |
CHIRANJIT S , SNEHA S , ANIRUDDHA M , et al . Synthesis, characterization of VPO catalyst dispersed on mesoporous silica surface and catalytic activity for cyclohexane oxidation reaction[J]. Microporous and Mesoporous Materials, 2016, 223: 121-128.
|