化工进展 ›› 2019, Vol. 38 ›› Issue (10): 4389-4402.DOI: 10.16085/j.issn.1000-6613.2019-0160
收稿日期:
2019-01-23
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
张群力
作者简介:
杨兆晟(1994—),男,硕士研究生,研究方向为相变蓄能。E-mail:基金资助:
Zhaosheng YANG(),Qunli ZHANG(),Wenjing ZHANG,Hongsheng ZONG
Received:
2019-01-23
Online:
2019-10-05
Published:
2019-10-05
Contact:
Qunli ZHANG
摘要:
中温相变蓄热系统在太阳能热利用、余热回收等领域有广泛的研究与应用前景,但相变材料较低的热导率严重削弱了相变蓄热系统的热响应速率和蓄放热效率。针对这一问题,本文从提高传热系数、拓展传热面积、增大平均温差3个方面对近年来中温相变蓄热系统强化传热方法进行了综述。通过分析可以看出,通过导热增强填料对相变材料进行改性时,应注意填料对导热和对流的共同作用,综合考虑填料对热导率、蓄放热时间等性能的影响;直接式相变蓄热系统重量轻,传热效率高,适合应用在移动式相变蓄热车中;梯级相变蓄热系统符合能量梯级利用理念,蓄放热效率高。在未来研究中,对导热增强填料的进一步改性、直接式相变蓄热系统、梯级相变蓄热系统及多种技术协同强化传热的作用机理和强化传热效果还有重要研究潜力与价值。
中图分类号:
杨兆晟,张群力,张文婧,宗弘盛. 中温相变蓄热系统强化传热方法研究进展[J]. 化工进展, 2019, 38(10): 4389-4402.
Zhaosheng YANG,Qunli ZHANG,Wenjing ZHANG,Hongsheng ZONG. Research progress on heat transfer enhancement methods for medium temperature latent heat thermal energy storage systems[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4389-4402.
PCM | 导热增强填料 | 改性方法 | 效果 |
---|---|---|---|
Ba(OH)2·8H2O[ | EG | 辛基酚聚氧乙烯 | 热导率比纯PCM提高了184% |
MgCl2·6H2O[ | EG | TX-100 | CPCM的热导率是纯PCM的7.7倍 |
Na2CO3·10H2O-Na2HPO4·12H2O共晶水合盐[ | EG;EGO | 氧化 | 达到相同热导率时EGO添加量较少 |
蜂蜡[ | MWCNTs | 球磨法,酸洗法 | 20%经过球磨法和酸洗法处理后的MWCNTs分别将蜂蜡热导率提高116%和132% |
石蜡[ | MWCNTs | 催化酸洗 | 处理后的MWCNTs将PCM热导率提高来了150%,优于未处理的MWCNTs |
癸酸-十二醇共混物[ | 氧化石墨烯 | N,N,N-三甲基-1-十六烷基 溴化铵 | 添加1%改性氧化石墨烯CPCP导热增强率达184%,添加10%改性 氧化石墨烯CPCP导热增强率为407% |
表1 碳基填料改性方法及效果
PCM | 导热增强填料 | 改性方法 | 效果 |
---|---|---|---|
Ba(OH)2·8H2O[ | EG | 辛基酚聚氧乙烯 | 热导率比纯PCM提高了184% |
MgCl2·6H2O[ | EG | TX-100 | CPCM的热导率是纯PCM的7.7倍 |
Na2CO3·10H2O-Na2HPO4·12H2O共晶水合盐[ | EG;EGO | 氧化 | 达到相同热导率时EGO添加量较少 |
蜂蜡[ | MWCNTs | 球磨法,酸洗法 | 20%经过球磨法和酸洗法处理后的MWCNTs分别将蜂蜡热导率提高116%和132% |
石蜡[ | MWCNTs | 催化酸洗 | 处理后的MWCNTs将PCM热导率提高来了150%,优于未处理的MWCNTs |
癸酸-十二醇共混物[ | 氧化石墨烯 | N,N,N-三甲基-1-十六烷基 溴化铵 | 添加1%改性氧化石墨烯CPCP导热增强率达184%,添加10%改性 氧化石墨烯CPCP导热增强率为407% |
1 | 彭犇, 岳昌盛, 邱桂博, 等 . 相变储能材料的最新研究进展与应用 [J]. 材料导报, 2018, 32(s1): 248-252. |
PENG Ben , YUE Changsheng , QIU Guibo , et al . The recent research progress and application of phase change and energy storage materials [J]. Materials Reports, 2018, 32(s1): 248-252. | |
2 | NAZIR H , BATOOL M , BOLIVAR OSORIO F J , et al . Recent developments in phase change materials for energy storage applications: a review [J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
3 | DENG Yong , LI Jinhong , QIAN Tingting , et al . Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage [J]. Chemical Engineering Journal, 2016, 295: 427-435. |
4 | GHOSSEIN R M AL , HOSSAIN M S , KHODADADI J M . Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage [J]. International Journal of Heat and Mass Transfer, 2017, 107: 697-711. |
5 | CUI Wenlong , YUAN Yanping , SUN Liangliang , et al . Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials [J]. Renewable Energy, 2016, 99: 1029-1037. |
6 | 华维三, 章学来, 罗孝学, 等 . 纳米金属/石蜡复合相变蓄热材料的实验研究[J]. 太阳能学报, 2017, 38(6): 1723-1728. |
HUA Weisan , ZHANG Xuelai , LUO Xiaoxue , et al . Experimental study of nanometal-paraffin composite phase change heat storage material [J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1723-1728. | |
7 | SHARMA R K , GANESAN P , TYAGI V V , et al . Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM) [J]. Applied Thermal Engineering, 2016, 99: 1254-1262. |
8 | SAHAN N , FOIS M , PAKSOY H . Improving thermal conductivity phase change materials — A study of paraffin nanomagnetite composites [J]. Solar Energy Materials and Solar Cells, 2015, 137: 61-67. |
9 | BABAPOOR A , KARIMI G . Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: comparison and optimization [J]. Applied Thermal Engineering, 2015, 90: 945-951. |
10 | WANG Changhong , LIN Tao , LI Na , et al . Heat transfer enhancement of phase change composite material: copper foam/paraffin [J]. Renewable Energy, 2016, 96: 960-965. |
11 | WANG Zichen , ZHANG Zhuqian , JIA Li , et al . Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery [J]. Applied Thermal Engineering, 2015, 78: 428-436. |
12 | HUSSAIN A , TSO C Y, CHAO C Y H . Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite [J]. Energy, 2016, 115: 209-218. |
13 | ZHANG P , MENG Z N , ZHU H , et al . Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam [J]. Applied Energy, 2017, 185: 1971-1983. |
14 | LI T X , WU D L , HE F , et al . Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage [J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-157. |
15 | HUANG Xiang , LIN Yaxue , ALVA G , et al . Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage [J]. Solar Energy Materials and Solar Cells, 2017, 170: 68-76. |
16 | XIAO X , ZHANG P , LI M . Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage [J]. International Journal of Thermal Sciences, 2014, 81: 94-105. |
17 | TAO Y B , YOU Y , HE Y L . Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material [J]. Applied Thermal Engineering, 2016, 93: 476-485. |
18 | 袁维烨, 章学来, 华维三, 等 . 膨胀石墨/三水乙酸钠复合相变材料储热的性能 [J]. 化工进展, 2018, 37(11): 4405-4411. |
YUAN Weiye , ZHANG Xuelai , HUA Weisan , et al . Thermal storage performance of sodium acetate trihydrate/expanded graphite composite phase change material [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4405-4411. | |
19 | SHAH K W . A review on enhancement of phase change materials: a nanomaterials perspective [J]. Energy and Buildings, 2018, 175: 57-68. |
20 | KARAIPEKLI A , BIÇER A , SARI A , et al . Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes [J]. Energy Conversion and Management, 2017, 134: 373-381. |
21 | 邹得球, 马先锋, 刘小诗, 等 . 石墨烯在相变材料中的研究进展[J]. 化工进展, 2017, 36(5): 1743-1754. |
ZOU Deqiu , MA Xianfeng , LIU Xiaoshi , et al . Research progress on graphene in phase change materials [J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1743-1754. | |
22 | HARISH S , OREJON D , TAKATA Y , et al . Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions [J]. Applied Thermal Engineering, 2017, 114: 1240-1246. |
23 | DSILVA W R D , SUGANTHI L , INIYAN S , et al . Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity [J]. Journal of Cleaner Production, 2018, 192: 9-29. |
24 | LIU Lin , ZHENG Ke , YAN Yang , et al . Graphene aerogels enhanced phase change materials prepared by one-pot method with high thermal conductivity and large latent energy storage [J]. Solar Energy Materials and Solar Cells, 2018, 185: 487-493. |
25 | SHEN Shile , TAN Shujuan , WU Sai , et al . The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials [J]. Energy Conversion and Management, 2018, 157: 41-48. |
26 | ZHOU Mingzheng , XIA Guodong , LI Jian , et al . Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions [J]. Experimental Thermal and Fluid Science, 2012, 36: 22-29. |
27 | TAO Y B , LIN C H , HE Y L . Effect of surface active agent on thermal properties of carbonate salt/carbon nanomaterial composite phase change material [J]. Applied Energy, 2015, 156: 478-489. |
28 | LIU Yushi , YANG Yingzi . Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: the influence of chemical structures of expanded graphite oxide [J]. Renewable Energy, 2018, 115: 734-740. |
29 | XIAO Qiangqiang , YUAN Wenhui , LI Li , et al . Fabrication and characteristics of composite phase change material based on Ba(OH)2·8H2O for thermal energy storage [J]. Solar Energy Materials and Solar Cells, 2018, 179: 339-345. |
30 | ZHOU Siyu , ZHOU Yan , LING Ziye , et al . Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs [J]. Applied Thermal Engineering, 2018, 133: 446-451. |
31 | PUTRA N , RAWI S , AMIN M , et al . Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage [J]. Journal of Energy Storage, 2019, 21: 32-39. |
32 | HAN Liang , JIA Xilai , LI Zhimin , et al . Effective encapsulation of paraffin wax in carbon nanotube agglomerates for a new shape-stabilized phase change material with enhanced thermal-storage capacity and stability [J]. Industrial & Engineering Chemistry Research, 2018, 57(39): 13026-13035. |
33 | 陈素清, 黄国波, 鲍建设, 等 . 石墨烯导热增强相变储能材料的制备及性能[J]. 新型炭材料, 2018(3): 262-267. |
CHEN Suqing , HUANG Guobo , BAO Jianshe ,et al . Preparation and thermal properties of a phase change material modified by a functionalized reduced graphene oxide [J]. New Carbon Materials, 2018(3): 262-267. | |
34 | GAO Liuhua , ZHAO Jun , AN Qingsong , et al . Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container [J]. Applied Thermal Engineering, 2017, 113: 858-866. |
35 | LI Tingxian , LEE J H, WANG Ruzhu , et al . Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application [J]. International Journal of Heat and Mass Transfer, 2014, 75: 1-11. |
36 | AGARWAL A , SARVIYA R M . An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material [J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 619-631. |
37 | WANG Yifei , WANG Liang , XIE Ninging , et al . Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit [J]. International Journal of Heat and Mass Transfer, 2016, 99: 770-781. |
38 | ELBAHJAOUI R , QARNIA H EL . Numerical study of a shell-and-tube latent thermal energy storage unit heated by laminar pulsed fluid flow [J]. Heat Transfer Engineering, 2016, 38(17): 1466-1480. |
39 | WANG Weilong , GUO Shaopeng , LI Hailong , et al . Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES) [J]. Applied Energy, 2014, 119: 181-189. |
40 | WANG Weilong , LI Hailong , GUO Shaopeng , et al . Numerical simulation study on discharging process of the direct-contact phase change energy storage system [J]. Applied Energy, 2015, 150: 61-68. |
41 | NOMURA T , TSUBOTA M , OYA T, et al . Heat storage in direct-contact heat exchanger with phase change material [J]. Applied Thermal Engineering, 2013, 50(1): 26-34. |
42 | NOMURA T , TSUBOTA M , OYA T, et al . Heat release performance of direct-contact heat exchanger with erythritol as phase change material [J]. Applied Thermal Engineering, 2013, 61(2): 28-35. |
43 | NOMURA T , TSUBOTA M , OKINAKA N , et al . Improvement on heat release performance of direct-contact heat exchanger using phase change material for recovery of low temperature exhaust heat [J]. ISIJ International, 2015, 55(2): 441-447. |
44 | GUO Shaopeng , ZHAO Jun , WANG Weilong , et al . Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container [J]. Applied Thermal Engineering, 2015, 78: 556-564. |
45 | RATHOD M K , BANERJEE J . Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins [J]. Applied Thermal Engineering, 2015, 75: 1084-1092. |
46 | SHEIKHOLESLAMI M , LOHRASBI S , GANJI D D . Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method [J]. Applied Thermal Engineering, 2016, 107: 154-166. |
47 | LOHRASBI S , SHEIKHOLESLAMI M , GANJI D D . Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles [J]. Applied Thermal Engineering, 2017, 118: 430-447. |
48 | TAO Y B , HE Y L . Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube [J]. Applied Energy, 2015, 143: 38-46. |
49 | YUAN Yanping , CAO Xiaoling , XIANG Bo , et al . Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage [J]. Solar Energy, 2016, 136: 365-378. |
50 | WANG Weiwei , WANG Liangbi , HE Yaling . Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate [J]. Applied Thermal Engineering, 2016, 93: 50-60. |
51 | KUBOTH S , KÖNIG-HAAGEN A , BRÜGGEMANN D . Numerical analysis of shell-and-tube type latent thermal energy storage performance with different arrangements of circular fins [J]. Energies, 2017, 10(3): 274. |
52 | DHAIDAN N S , KHODADADI J M . Melting and convection of phase change materials in different shape containers: a review [J]. Renewable and Sustainable Energy Reviews, 2015, 43: 449-477. |
53 | BELLAN S , ALAM T E , GONZÁLEZ-AGUILAR J , et al . Numerical and experimental studies on heat transfer characteristics of thermal energy storage system packed with molten salt PCM capsules [J]. Applied Thermal Engineering, 2015, 90: 970-979. |
54 | RAUL A , JAIN M , GAIKWAD S , et al . Modelling and experimental study of latent heat thermal energy storage with encapsulated PCMs for solar thermal applications [J]. Applied Thermal Engineering, 2018, 143: 415-428. |
55 | SAMI S , SADRAMELI S M , ETESAMI N . Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems [J]. Applied Thermal Engineering, 2018, 130: 1416-1424. |
56 | GAO Fengxia , WANG Xiaodong , WU Dezhen . Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide [J]. Solar Energy Materials and Solar Cells, 2017, 168: 146-164. |
57 | CHAI Luxiao , WANG Xiaodong , WU Dezhen . Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness [J]. Applied Energy, 2015, 138: 661-674. |
58 | LIN Yaxue , ZHU Chuqiao , FANG Guiyin . Synthesis and properties of microencapsulated stearic acid/silica composites with graphene oxide for improving thermal conductivity as novel solar thermal storage materials [J]. Solar Energy Materials and Solar Cells, 2019, 189: 197-205. |
59 | JIANG Xiang , LUO Ruilian , PENG Feifei , et al . Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3 [J]. Applied Energy, 2015, 137: 731-737. |
60 | BAŞAL B , ÜNAL A . Numerical evaluation of a triple concentric-tube latent heat thermal energy storage [J]. Solar Energy, 2013, 92: 196-205. |
61 | ELBAHJAOUI R , QARNIA H EL , NAIMI A . Thermal performance analysis of combined solar collector with triple concentric-tube latent heat storage systems [J]. Energy & Buildings, 2018, 168: 438-456. |
62 | MAHDI J M , LOHRASBI S , GANJI D D , et al . Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger [J]. International Journal of Heat and Mass Transfer, 2018, 124: 663-676. |
63 | ABDULATEEF A M , MAT S, SOPIAN K , et al . Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins [J]. Solar Energy, 2017, 155: 142-153. |
64 | ABDULATEEF A M , ABDULATEEF J , MAT S, et al . Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins [J]. International Communications in Heat and Mass Transfer, 2018, 90: 73-84. |
65 | ABDULATEEF A M , MAT S, ABDULATEEF J , et al . Thermal performance enhancement of triplex tube latent thermal storage using fins-nano-phase change material technique [J]. Heat Transfer Engineering, 2018, 39(12): 1067-1080. |
66 | WEI Gaosheng , WANG Gang , XU Chao , et al . Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1771-1786. |
67 | ELFEKY K E , AHMED N , WANG Qiuwang . Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants [J]. Applied Thermal Engineering, 2018, 139: 609-622. |
68 | PEIRÓ G , GASIA J , MIRÓ L , et al . Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage [J]. Renewable Energy, 2015, 83: 729-736. |
69 | TAO Y B , HE Y L . Numerical study on performance enhancement of shell-and-tube latent heat storage unit [J]. International Communications in Heat and Mass Transfer, 2015, 67: 147-152. |
70 | DZIKEVICS M , ZANDECKIS A . Mathematical model of packed bed solar thermal energy storage simulation [J]. Energy Procedia, 2015, 72: 95-102. |
71 | YANG Lei , ZHANG Xiaosong , XU Guoying . Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points [J]. Energy and Buildings, 2014, 68: 639-646. |
72 | TAO Y B , HE Y L , LIU Y K , et al . Performance optimization of two-stage latent heat storage unit based on entransy theory [J]. International Journal of Heat and Mass Transfer, 2014, 77: 695-703. |
73 | WU Ming , XU Chao , HE Yaling . Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules [J]. Applied Thermal Engineering, 2016, 93: 1061-1073. |
74 | HU Zhipei , LI Angui , GAO Ran , et al . Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs [J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(2): 1407-1416. |
75 | ALDOSS T K , RAHMAN M M . Comparison between the single-PCM and multi-PCM thermal energy storage design [J]. Energy Conversion and Management, 2014, 83: 79-87. |
76 | ALDOSS T K , RAHMAN M M . Latent heat energy storage system with continuously varying melting temperature [J]. International Journal of Mechanical Engineering and Robotics Research, 2016, 7(2): 113-119. |
77 | XU H J , ZHAO C Y . Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model [J]. Renewable Energy, 2016, 86: 228-237. |
78 | WANG Peilun , WANG Xiang , HUANG Yun , et al . Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs) [J]. Applied Energy, 2015, 142: 328-336. |
79 | BAINS P S , SINGH H . Exploratory investigation of a new thermal energy storage system with different phase change materials having distinct melting temperatures [J]. Journal of Energy Storage, 2018, 19: 1-9. |
80 | LI Xiaoyan , HUANG Rongpeng , MIAO Xinyue , et al . Investigation of the dynamic characteristics of a thermal energy storage unit filled with multiple phase change materials [J]. Thermal Science, 2018, 222: S527-S533. |
81 | ZHAO Y , YOU Y , LIU H B , et al . Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process [J]. Energy, 2018, 157: 690-706. |
82 | BENMOUSSA H , BENMOUSSA F , BENZAOUI A . Thermal behavior of latent thermal energy storage unit using two phase change materials: effects of HTF inlet temperature [J]. Case Studies in Thermal Engineering, 2017, 10: 475-483. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[4] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[5] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[6] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[7] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[8] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[9] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[10] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[11] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[12] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[13] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[14] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[15] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |