化工进展 ›› 2019, Vol. 38 ›› Issue (01): 382-393.DOI: 10.16085/j.issn.1000-6613.2018-1091
收稿日期:
2018-06-06
修回日期:
2018-09-01
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
金万勤
作者简介:
储震宇(1986—),男,博士,副教授,研究方向为纳米生物传感薄膜。E-mail:<email>zychu@njtech.edu.cn</email>。|金万勤,教授,博士生导师,研究方向为分离膜及生物传感薄膜。E-mail:<email>wqjin@njtech.edu.cn</email>。
基金资助:
Received:
2018-06-06
Revised:
2018-09-01
Online:
2019-01-05
Published:
2019-01-05
Contact:
Wanqin JIN
摘要:
发酵工业目前缺少组分浓度实时监控技术以实现精确过程调控,因此,发酵用生物传感器逐渐受到该领域的重视。本文将关注发酵用生物传感器的最新研究进展,特别综述新型纳米传感材料在发酵组分检测中的最新研究成果,介绍在不同的发酵体系中纳米材料的设计及合成策略,包括贵金属、金属氧化物、配位化合物、有机化合物及碳基等各类纳米材料,简述这些纳米材料在发酵传感中的检测机理以及所开发的生物传感器在不同真实发酵液中的检测性能,从检测灵敏度、工作电位、抗干扰能力等方面系统地评价各类纳米材料在发酵环境中使用的优势和不足,分析发酵体系专用生物传感器材料的发展方向,为研发出可实现“多组分”及“宽检测范围”的发酵组分浓度检测技术提供重要的参考及借鉴。
中图分类号:
储震宇, 金万勤. 新型纳米传感薄膜材料在发酵组分检测中的研究进展[J]. 化工进展, 2019, 38(01): 382-393.
Zhenyu CHU, Wanqin JIN. Recent research progress on novel sensing film nanomaterials for detection of fermentation components[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 382-393.
1 | 欧阳平凯 . 发酵工程关键技术及其应用[M]. 北京:化学工业出版社, 2005. |
OUYANG P K . Key technology and application of fermentation engineering[M]. Beijing: Chemical Industry Press,2005. | |
2 | PATRAŞCU I , LDEA C S B , KISS A A . Eco-efficient butanol separation in the ABE fermentation process[J]. Separation & Purification Technology,2017,177:49-61. |
3 | 李成群 . 中国生物发酵产品产量达2420万吨 居世界第一[EB/OL]. [2015-04-24]. . |
LI C Q . China's output of biological fermentation products reached 24.tons million ranking first in the world [EB/OL]. [2015-04-24]. . | |
4 | 刘二伟,朱文学,曹力,等 . 我国发酵工业存在的主要问题及解决措施[J]. 生物技术通讯,2015,26(3):446-448. |
LIU E W , ZHU W X , CAO L ,et al . The main problems and solutions in the fermentation industry in China[J]. Letters in Biotechnology,2015,26(3):446-448. | |
5 | KIM S H , HAN S K , SHIN H S . Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter[J]. Process Biochemistry,2006,41(1):199-207. |
6 | QURESHI N , SAHA B C , HECTOR R E ,et al . Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part —Batch fermentation[J]. Biomass and Bioenergy,2008,32(2):168-175. |
7 | MEARS L , STOCKS S M , SIN G ,et al . A review of control strategies for manipulating the feed rate in fed-batch fermentation processes[J]. Journal of Biotechnology,2017,245:34-46. |
8 | BELLON-MAUREL V , ORLIAC O , CHRISTEN P . Sensors and measurements in solid state fermentation: a review[J]. Process Biochemistry,2003,38(6):881-896. |
9 | KROMMENHOEK E E , VAN LEEUWEN M , GARDENIERS H ,et al . Lab-scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration[J]. Biotechnology & Bioengineering,2008,99(4):884-892. |
10 | ALEXANDROPOULOU M , ANTONOPOULOU G , LYBERATOS G . A novel approach of modeling continuous dark hydrogen fermentation[J]. Bioresource Technology,2017,250:784. |
11 | WANG J . Glucose biosensors: 40 years of advances and challenges[J]. Electroanalysis,2010,13(12): 983-988. |
12 | GOODE J A , RUSHWORTH J V H , MILLNER P A . Biosensor regeneration: a review of common techniques and outcomes[J]. Langmuir the ACS Journal of Surfaces & Colloids,2015,31(23):6267-6276. |
13 | BROOKS K E , RAWAL N , HENDERSON A R . Laboratory assessment of three new monitors of blood glucose, AccuChekⅡ Glucometer Ⅱ and Glucosan 2000[J]. Clinical Chemistry,1987,32(12):2195-2200. |
14 | 张先恩 . 生物传感器[M]. 北京:化学工业出版社, 2006. |
ZHANG X E . Biosensor[M]. Beijing: Chemical Industry Press,2006. | |
15 | WANG J . Electrochemical glucose biosensors[J]. Chemical Reviews,2008,108:814-825. |
16 | CHU Z Y , LIU Y , JIN W Q . Recent progress in Prussian blue films: methods used to control regular nanostructures for electrochemical biosensing applications[J]. Biosensors & Bioelectronics,2017,96:17-25. |
17 | LIU L F , SHI L , CHU Z Y ,et al . Prussian blue nanocubes modified graphite electrodes for the electrochemical detection of various analytes with high performance[J]. Sensors and Actuators B: Chemical,2014,202:820-826. |
18 | XU J J , ZHAO W , LUO X L ,et al . A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors[J]. Chemical Communications,2005,6(6):792-794. |
19 | OZEL R E , ISPAS C , GANESANA M ,et al . Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments[J]. Biosensors & Bioelectronics,2014,52:397-402. |
20 | ZHANG L , XU Z , SUN X ,et al . A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)3 2+ Au nanoparticles aggregates[J]. Biosensors & Bioelectronics,2007,22(6):1097-1100. - |
21 | TSAI Y C , HUANG J D , CHIU C C . Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite[J]. Biosensors & Bioelectronics,2007,22(12):3051-3056. |
22 | KUMAR G S , WEE Y , LEE I ,et al . Stabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone[J]. Chemical Engineering Journal,2015,276:283-288. |
23 | ZHANG H , XU Z , SHEN J ,et al . Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme[J]. Scientific Reports,2015,5:10031. |
24 | VARGAS E , CONZUELO F , RUIZ M ,et al . Automated bioanalyzer based on amperometric enzymatic biosensors for the determination of ethanol in low-alcohol beers[J]. Beverages,2017,3(4):22. |
25 | WANG L , TAO T , SU W ,et al . A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice[J]. Lab on A Chip,2017,17(10):1749-1760. |
26 | CHU Z Y , LI L L , LIU G P ,et al . A novel membrane with heterogeneously functionalized nanocrystal layers performing blood separation and sensing synchronously[J]. Chemical Communications,2016,52(86): 12706-12709. |
27 | LIANG B , GUO X , FANG L ,et al . Study of direct electron transfer and enzyme activity of glucose oxidase on graphene surface[J]. Electrochemistry Communications,2015,50:1-5. |
28 | CHU Z Y , PENG J M , JIN W Q . Advanced nanomaterial inks for screen-printed chemical sensors[J]. Sensors and Actuators B: Chemical,2017,243:919-926. |
29 | GUERRIERI A , LATTANZIO V , PALMISANO F ,et al . Electrosynthesized poly(pyrrole)/poly(2-naphthol) bilayer membrane as an effective anti-interference layer for simultaneous determination of acethylcholine and choline by a dual electrode amperometric biosensor[J]. Biosensors & Bioelectronics,2006,21(9):1710-1718. |
30 | EGGINS B R . Chemical sensors and biosensors[M]. New York: John Wiley & Sons,2008. |
31 | COOPER J , CASS T . Biosensors[M]. New York: Oxford University Press,2004. |
32 | TRIPATHI V S , KANDIMALLA V B , JU H . Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite[J]. Biosensors and Bioelectronics,2006,21(8):1529-1535. |
33 | LIU Y , CHU Z Y , JIN W Q . A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian blue modified electrode[J]. Electrochemistry Communications,2009,11(2):484-487. |
34 | JIA J , WANG B , WU A ,et al . A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network[J]. Analytical Chemistry,2002,74(9):2217-2223. -based |
35 | SOLANKI P R , KAUSHIK A , AGRAWAL V V ,et al . Nanostructured metal oxide biosensors[J]. NPG Asia Materials,2011,3(1):17. |
36 | HUYNH T P , SHARMA P S , SOSNOWSKA M ,et al . Functionalized polythiophenes: recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability[J]. Progress in Polymer Science,2015,47:1-25. |
37 | CHAN D , BARSAN M M , KORPAN Y ,et al . L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase[J]. Electrochimica Acta,2017,231:209-215. |
38 | ARYA S K , SAHA S , RAMIREZ-VICK J E ,et al . Recent advances in ZnO nanostructures and thin films for biosensor applications[J]. Analytica Chimica Acta,2012,737:1-21. |
39 | CHEN S , YUAN R , CHAI Y ,et al . Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review[J]. Microchimica Acta,2013,180(1/2):15-32. |
40 | UPDIKE S , HICKS G . Reagentless substrate analysis with immobilized enzymes[J]. Science,1967,158(3798):270-272. |
41 | JENA B K , RAJ C R . Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles[J]. Analytical Chemistry,2006,78(18):6332-6339. |
42 | TIĞ G A . Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-cysteine)/reduced graphene oxide nanocomposite[J]. Talanta,2017,175:382-389. |
43 | LAMAS-ARDISANA P J , LOAIZA O A , ORGA L A ,et al . Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly(diallyldimethylammonium chloride) films[J]. Biosensors & Bioelectronics,2014,56:345-351. |
44 | CHU Z Y , SHI L , LIU L F ,et al . Highly enhanced performance of glucose biosensor via in situ growth of oriented Au micro-cypress[J]. Journal of Materials Chemistry,2012,22(41):21917-21922. |
45 | SAMPHAO A , BUTMEE P , SAEJUENG P ,et al . Monitoring of glucose and ethanol during wine fermentation by bienzymatic biosensor[J]. Journal of Electroanalytical Chemistry,2018,816:179-188. |
46 | RAHMAN M M , AHAMMAD A , JIN J H ,et al . A comprehensive review of glucose biosensors based on nanostructured metal-oxides[J]. Sensors,2010,10(5):4855-4886. |
47 | XIAO F , LI Y , ZAN X ,et al . Growth of metal-metal oxide nanostructures on freestanding graphene paper for flexible biosensors[J]. Advanced Functional Materials,2012,22(12):2487-2494. |
48 | BIROL G , ÜNDEY C , CINAR A . A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering,2002,26(11):1553-1565. |
49 | IBUPOTO Z H , ALI S M , KHUN K ,et al . ZnO nanorods based enzymatic biosensor for selective determination of penicillin[J]. Biosensors,2011,1(4):153-163. |
50 | AMPELLI C , LEONARDI S G , GENOVESE C ,et al . Monitoring of glucose in fermentation processes by using Au/TiO2 composites as novel modified electrodes[J]. Journal of Applied Electrochemistry,2015,45(9):943-951. |
51 | RICCI F , PALLESCHI G . Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes[J]. Biosensors and Bioelectronics,2005,21(3):389-407. |
52 | WU X Q ,MA J G, LI H ,et al . Metal-organic framework biosensor with high stability and selectivity in a bio-mimic environment[J]. Chemical Communications,2015,51(44):9161-9164. |
53 | ITAYA K , UCHIDA I , NEFF V D . Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues[J]. Accounts of Chemical Research,1986,19(6):162-168. |
54 | KARYAKIN A A , KARYAKINA E E , GORTON L . Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide[J]. Analytical Chemistry,2000,72(7):1720-1723. |
55 | VAUCHER S , LI M , MANN S . Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions[J]. Angewandte Chemie International Edition,2000,39(10):1793-1796. |
56 | JOHANSSON A , WIDENKVIST E , LU J ,et al . Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template[J]. Nano letters,2005,5(8):1603-1606. |
57 | CHU Z Y , LIU Y , JIN W Q ,et al . Facile fabrication of a Prussian blue film by direct aerosol deposition on a Pt electrode[J]. Chemical Communications,2009,24(24):3566-3567. |
58 | CHU Z Y , ZHANG Y N , DONG X L ,et al . Template-free growth of regular nano-structured Prussian blue on a platinum surface and its application in biosensors with high sensitivity[J]. Journal of Materials Chemistry,2010,20(36):7815-7820. |
59 | CHU Z Y , SHI L , LIU L F ,et al . Highly enhanced performance of glucose biosensor via in situ growth of oriented Au micro-cypress[J]. Journal of Materials Chemistry,2012,22(41):21917. |
60 | CHU Z Y , SHI L , ZHANG Y N ,et al . Single layer Prussian blue grid as a versatile enzyme trap for low-potential biosensors[J]. Journal of Materials Chemistry,2012,22(30):14874. |
61 | CHU Z Y , ZHANG Y N , DONG X L ,et al . Template-free growth of regular nano-structured Prussian blue on a platinum surface and its application in biosensors with high sensitivity[J]. Journal of Materials Chemistry,2010,20(36):7815. |
62 | FU Y , LI P , BU L ,et al . Exploiting metal-organic coordination polymers as highly efficient immobilization matrixes of enzymes for sensitive electrochemical biosensing[J]. Analytical Chemistry,2011,83(17):6511-6517. |
63 | SHRIVASTAVA S , JADON N , JAIN R . Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review[J]. TrAC Trends in Analytical Chemistry,2016,82:55-67. |
64 | APETREI C , RODR GUEZ-M NDEZ M , DE SAJA J . Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds[J]. Electrochimica Acta,2011,56(24):8919-8925. |
65 | GERARD M , CHAUBEY A , MALHOTRA B . Application of conducting polymers to biosensors[J]. Biosensors & Bioelectronics,2002,17(5):345-359. |
66 | PALMISANO F , RIZZI R , CENTONZE D ,et al . Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films[J]. Biosensors and Bioelectronics,2000,15(9/10): 531-539. |
67 | GIMÉNEZ GÓMEZ P , GUTIÉRREZ CAPITÁN M , CAPDEVILA F ,et al . Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for L-lactate with long term stability[J]. Analytica Chimica Acta,2016,905:126-133. |
68 | SHAO Y , WANG J , WU H ,et al . Graphene based electrochemical sensors and biosensors: a review[J]. Electroanalysis,2010,22(10):1027-1036. |
69 | WANG J . Carbon-nanotube based electrochemical biosensors: a review[J]. Electroanalysis,2005,17(1):7-14. |
70 | AHMAD M , PAN C , GAN L ,et al . Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres[J]. The Journal of Physical Chemistry C,2009,114(1):243-250. |
71 | SEFCOVICOVA J , FILIP J , MASTIHUBA V ,et al . Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor[J]. Biotechnology Letters,2012,34(6):1033-1039. |
72 | RAFIGHI P , TAVAHODI M , HAGHIGHI B . Fabrication of a third-generation glucose biosensor using graphene-polyethyleneimine-gold nanoparticles hybrid[J]. Sensors and Actuators B: Chemical,2016,232:454-461. |
73 | CHU Z Y , LIU Y , XU Y Q ,et al . In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection[J]. Electrochimica Acta,2015,176:162-171. |
74 | CHU Z Y , SHI L , JIN W Q . 3D graphene nano-grid as a homogeneous protein distributor for ultrasensitive biosensors[J]. Biosensors & Bioelectronics,2014,61(21):422-428. |
75 | SHI L , CHU Z Y , LIU Y ,et al . In situ fabrication of three‐dimensional graphene films on gold substrates with controllable pore structures for high performance electrochemical sensing[J]. Advanced Functional Materials,2015,24(44):7032-7041. |
76 | KUMAR S , AHLAWAT W , KUMAR R ,et al . Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare[J]. Biosensors & Bioelectronics,2015,70(1):498-503. |
77 | SONG Y , LUO Y , ZHU C ,et al . Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials[J]. Biosensors and Bioelectronics,2016,76:195-212. |
[1] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[2] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[3] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[4] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[5] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[6] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[7] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[8] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[9] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[10] | 秦凯, 杨仕林, 李俊, 储震宇, 薄翠梅. 基于卡尔曼滤波算法的葡萄糖酶生物传感器高精度检测方法[J]. 化工进展, 2023, 42(6): 3177-3186. |
[11] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[12] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[13] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[14] | 黄越, 赵立欣, 姚宗路, 于佳动, 李再兴, 申瑞霞, 安柯萌, 黄亚丽. 木质纤维类废弃物定向生物转化乳酸、乙酸研究进展[J]. 化工进展, 2023, 42(5): 2691-2701. |
[15] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |