[1] UNLAND M L. Isocyanate intermediates in the reaction NO+CO over a Pt/Al2O3 catalyst[J]. Journal of Physical Chemistry, 1973, 77(16):1952-1956.
[2] TAUSTER S J, MURRELL L L. The NO-CO reaction in the presence of excess O2 as catalyzed by iridium[J]. Journal of Catalysis, 1976, 41(1):192-195.
[3] CHEN L F, GONZALEZ G, WANG J A, et al. Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen[J]. Applied Surface Science, 2005, 243(1):319-328.
[4] MARTÍNEZ-ARIAS A, HUNGRIA A B, FERNANDEZ-GARCIA M, et al. Light-off behaviour of PdO/γ-Al2O3 catalysts for stoichiometric CO-O2 and CO-O2-NO reactions:a combined catalytic activity in situ DRIFTS study[J]. Journal of Catalysis, 2004, 221(1):85-92.
[5] IGLESIAS-JUEZ A, KUBACKA A, FERNANDEZ-GARCIA M, et al. Nanoparticulate Pd supported catalysts:size-dependent formation of Pd(Ⅰ)/Pd(0) and their role in CO elimination[J]. Journal of the American Chemical Society, 2011, 133(12):4484-4489.
[6] HOLLES J H, DAVIS R J, MURRAY T M, et al. Effects of Pd particle size and ceria loading on NO reduction with CO[J]. Journal of Catalysis, 2000, 195(1):193-206.
[7] CIUPARU D, BENSALEM A, PFEFFERLE L. Pd-Ce interactions and adsorption properties of palladium:CO and NO TPD studies over Pd-Ce/Al2O3 catalysts[J]. Applied Catalysis B:Environmental, 2000, 26(4):241-255.
[8] NORONHA F B, BALDANZA M A S, SCHMAL M. CO and NO adsorption on alumina-Pd-Mo catalysts:effect of the precursor salts[J]. Journal of Catalysis, 1999, 188(2):270-280.
[9] NEYERTZ C, VOLPE M. Preparation of binary palladium-vanadium supported catalysts from metal acetylacetonates[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1998, 136(2):63-69.
[10] HUNGR A A B, FERN NDEZ-GARC A M, ANDERSON J A, et al. The effect of Ni in Pd-Ni/(Ce,Zr)Ox/Al2O3 catalysts used for stoichiometric CO and NO elimination. Part 2:catalytic activity and in situ spectroscopic studies[J]. Journal of Catalysis, 2005, 235(2):262-271.
[11] ILLAS F, LOPEZ N, RICART J M, et al. Interaction of CO and NO with PdCu(111) surfaces[J]. Journal of Physical Chemistry B, 1998, 102(41):8017-8023.
[12] MURAKI H, SHINJOH H, FUJITANI Y. Reduction of NO by CO over alumina-supported palladium catalyst[J]. Industrial & Engineering Chemistry Product Research and Development, 1986, 25(3):419-424.
[13] MAMEDE A S, LECLERCQ G, PAYEN E, et al. In situ Raman characterisation of surface modifications during NO transformation over automotive Pd-based exhaust catalysts[J]. Journal of Molecular Structure, 2003, 651(1):353-364.
[14] MATAM S K, NEWTON M A, WEIDENKAFF A, et al. Time resolved operando spectroscopic study of the origin of phosphorus induced chemical aging of model three-way catalysts Pd/Al2O3[J]. Catalysis Today, 2013, 205(1):3-9.
[15] ALMUSAITEER K, CHUANG S S C. Isolation of active adsorbates for the NO-CO reaction on Pd/Al2O3 by selective enhancement and selective poisoning[J]. Journal of Catalysis, 1998, 180(2):161-170.
[16] ALMUSAITEER K, CHUANG S S C. Dynamic behavior of adsorbed NO and CO under transient conditions on Pd/Al2O3[J]. Journal of Catalysis, 1999, 184(1):189-201.
[17] TANIKAWA K, EGAWA C. Effect of barium addition over palladium catalyst for CO-NO-O2 reaction[J]. Journal of Molecular Catalysis A:Chemical, 2011, 349(2):94-99.
[18] FERNANDEZ-GARCIA M, MARTINEZ-ARIAS A, BELVER C, et al. Behavior of palladium-copper catalysts for CO and NO elimination[J]. Journal of Catalysis, 2000, 190(2):387-395.
[19] MILLER D D, CHUANG S S C. The effect of O2 on the NO-CO reaction over Ag-Pd/Al2O3:an in situ infrared study[J]. Catalysis Communications, 2009, 10(9):1313-1318.
[20] OGURA M, KAWAMURA A, MATSUKATA M, et al. Catalytic activity of Ir for NO-CO reaction in the presence of SO2 and excess oxygen[J]. Chemistry Letters, 2000, 29(2):146-147.
[21] MANTRI D, AGHALAYAM P. Detailed surface reaction mechanism for reduction of NO by CO[J]. Catalysis Today, 2007, 119(1):88-93.
[22] SHIMOKAWABE M, NⅡTSU M, INOMATA H, et al. A highly active Ir/WO3 catalyst for the selective reduction of NO by CO in the presence of O2 or O2+SO2[J]. Chemistry Letters, 2005, 34(10):1426-1427.
[23] INOMATA H, SHIMOKAWABE M, ARAI M. An Ir/WO3 catalyst for selective reduction of NO with CO in the presence of O2 and/or SO2[J]. Applied Catalysis A:General, 2007, 332(1):146-152.
[24] TAKAHASHI A, NAKAMURA I, HANEDA M, et al. Role of tungsten in promoting selective reduction of NO with CO over Ir/WO3-SiO2 catalysts[J]. Catalysis Letters, 2006, 112(3):133-138.
[25] TAMAI T, HANEDA M, FUJITANI T, et al. Promotive effect of Nb2O5 on the catalytic activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions[J]. Catalysis Communications, 2007, 8(6):885-888.
[26] HANEDA M, KUDO H, NAGAO Y, et al. Enhanced activity of Ba-doped Ir/SiO2 catalyst for NO reduction with CO in the presence of O2 and SO2[J]. Catalysis Communications, 2006, 7(7):423-426.
[27] HANEDA M, HAMADA H. Promoting effect of coexisting H2O on the activity of Ir/WO3/SiO2 catalyst for the selective reduction of NO with CO[J]. Chemistry Letters, 2008, 37(8):830-831.
[28] HANEDA M, PUSPARATU, KINTAICHI Y, et al. Promotional effect of SO2 on the activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions[J]. Journal of Catalysis, 2005, 229(1):197-205.
[29] FUJITANI T, NAKAMURA I, KOBAYASHI Y, et al. Adsorption and reactivity of SO2 on Ir(111) and Rh(111)[J]. Surface Science, 2007, 601(6):1615-1622.
[30] FUJITANI T, NAKAMURA I, TAKAHASHI A, et al. Kinetics and mechanism of NO reduction with CO on Ir surfaces[J]. Journal of Catalysis, 2008, 253(1):139-147.
[31] NAKAMURA I, FUJITANI T. Adsorption behavior and reaction properties of NO and CO on Ir(111) and Rh(111)[J]. Catalysis Surveys from Asia, 2009, 13(1):22-29.
[32] WANG A Q, MA L, CONG Y, et al. Unique properties of Ir/ZSM-5 catalyst for NO reduction with CO in the presence of excess oxygen[J]. Applied Catalysis B:Environmental, 2003, 40(1):319-329.
[33] YAMAMOTO T, TANAKA T, KUMA R, et al. NO reduction with CO in the presence of O2 over Al2O3-supported and Cu-based catalysts[J]. Physical Chemistry Chemical Physics, 2002, 4(11):2449-2458.
[34] MARTINEZ-ARIAS A, HUNGRIA A B, IGLESIAS-JUEZ A, et al. Redox and catalytic properties of CuO/CeO2 under CO+O2+NO:promoting effect of NO on CO oxidation[J]. Catalysis Today, 2012, 180(1):81-87.
[35] YOSHIDA H, OKABE Y, YAMASHITA N, et al. Catalytic CO-NO reaction over Cr-Cu embedded CeO2 surface structure[J]. Catalysis Today, 2017, 281(3):590-595.
[36] MEHANDJIEV D, PANAYOTOV D, KHRISTOVA M. Catalytic reduction of NO with CO over CuxCo3-xO4 spinels[J]. Reaction Kinetics and Catalysis Letters, 1987, 33(2):273-277.
[37] PANAYOTOV D, KHRISTOVA M, MEHANDJIEV D. ChemInform abstract:application of the transient response technique to the study of CO+NO+O2 Interaction on CuxCo3-xO4 catalysts[J]. Cheminform, 1996, 27(5):219-228.
[38] SPASSOVA I, KHRISTOVA M, PANAYOTOV D, et al. Coprecipitated CuO-MnOx catalysts for low-temperature CO-NO and CO-NO-O2 reactions[J]. Journal of Catalysis, 1999, 185(1):43-57.
[39] AMANO F, SUZUKI S, YAMAMOTO T, et al. One-electron reducibility of isolated copper oxide on alumina for selective NO-CO reaction[J]. Applied Catalysis B:Environmental, 2006, 64(3):282-289.
[40] ZHANG R, TEOH W Y, AMAL R, et al. Catalytic reduction of NO by CO over Cu/CexZr1-xO2 prepared by flame synthesis[J]. Journal of Catalysis, 2010, 272(2):210-219.
[41] KANTCHEVA M, MILANOVA M, MAMETSHERIPOV S. In situ FT-IR spectroscopic investigation of gold supported on tungstated zirconia as catalyst for CO-SCR of NOx[J]. Catalysis Today, 2012, 191(1):12-19.
[42] PANAYOTOV D, KHRISTOVA M, VELIKOVA M. Interactions NO-CO and O2-NO-CO on CuCo2O4/γ-Al2O3 and on γ-Al2O3 and CuCo2O4/γ-Al2O3-supported Pt, Rh and Pt-Rh catalysts, a transient response study[J]. Applied Catalysis B:Environmental, 1996, 9(1):107-132.
[43] NAKATSUJI T, YAMAGUCHI T, SATO N, et al. A selective NOx reduction on Rh-based catalysts in lean conditions using CO as a main reductant[J]. Applied Catalysis B:Environmental, 2008, 85(1):61-70.
[44] SARKAR A D, KHANRA B C. Microkinetic model studies of impurity effects on CO+O2, CO+NO and CO+NO+O2 reactions over supported Pt-Rh nanocatalysts[J]. Chemical Physics Letters, 2004, 384(4):339-343.
[45] WANG Y, ZHU A, ZHANG Y, et al. Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction[J]. Applied Catalysis B:Environmental, 2008, 81(1):141-149.
[46] SIERRA-PEREIRA C A, URQUIETA-GONZ LEZ E A. Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam[J]. Fuel, 2014, 118(1):137-147.
[47] BELESSI V C, BAKAS T V, COSTA C N, et al. Synergistic effects of crystal phases and mixed valences in La-Sr-Ce-Fe-O mixed oxidic/perovskitic solids on their catalytic activity for the NO plus CO reaction[J]. Applied Catalysis B:Environmental, 2000, 28(1):13-28.
[48] ZHU R, GUO M, HE J. NO reactions over Ir-based catalysts under oxygen-rich conditions[J]. Fuel Processing Technology, 2013, 108(108):63-68.
[49] LIU K, YU Q, LIU J, et al. Selection of catalytically active elements for removing NO and CO from flue gas at low temperatures[J]. New Journal of Chemistry, 2017, 41(22):13993-13999. |