[1] 李兵, 王培红. 氢能经济发展现状及展望[J]. 上海电力, 2010, 3:173-176. LI B, WANG P H. The present situation and prospect of the economic development of hydrogen[J]. Shanghai Electric Power, 2010, 3:173-176.
[2] 梁可心, 徐芸菲, 许佩瑶, 等. 复合TiO2纳米管材料光催化裂解水产氢研究进展[J]. 化工进展, 2017, 36(11):4051-4056. LIANG K X, XU Y F, XU P Y, et al. Progress of photocatalytic water splitting for hydrogen production over TiO2 nanotube composite materials[J]. Chemical Industry and Engineering Progress, 2017, 36(11):4051-4056.
[3] 王东旭, 肖显斌, 李文艳. 乙酸蒸汽催化重整制氢的研究进展[J]. 化工进展, 2017, 36(5):1658-1665. WANG D X, XIAO X B, LI W Y. A review of literatures on catalytic steam reforming of acetic acid for hydrogen production[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1658-1665.
[4] BROWN L C, FUNK J F, FUNK J F. Initial screening of thermochemical water-splitting cycles for high efficiency generation of hydrogen fuels using nuclear power, GA-A23373[R]. San Diego:General Atomics. 2000.
[5] BROWN L C, BESENBRUCH G E, SCHULTZ K R. High efficiency generation of hydrogen fuels using thermochemical cycles and nuclear power, GA-A24326[R]. San Diego:General Atomics. 2000.
[6] BROWN L C, LENTSCH R D, BESENBRUCH G E. Alternative flowsheets for the sulfur-iodine thermochemical hydrogen cycle, GA-A24266[R]. San Diego:General Atomics. 2003.
[7] HUANG C, RAISSI A. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part Ⅰ:Decomposition of sulfuric acid[J]. Sol. Energy, 2005, 78:632-646.
[8] KUBO S, NAKAJIMA H, KASAHARA S. A pilot test plan of the thermochemical water-splitting iodine-sulfur process[J]. Nuclear Engineering and Design, 2004, 233(1):355-362.
[9] GUO H F, ZHANG P, CHEN S Z, et al. Review of thermodynamic properties of the components in HI decomposition section of the iodineesulfur process[J]. International Journal of Hydrogen Energy, 2011, 36(16):9505-9513.
[10] ENGELS H, KNOCHE K F. Vapor pressures of the system HI/H2O/I2 and H2[J]. International Journal of Hydrogen Energy, 1986, 11(11):703-707.
[11] O'KEEFE D R, NORMAN J H, WILLIAMSON D G. Catalysis research in thermochemical water-splitting processes[J]. Catalysis Reviews, 1980, 22(3):325-369.
[12] ZHANG Y W, WANG Z H, ZHOU J H, et al. Detailed kinetic modeling and sensitivity analysis of hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 3(2):627-632.
[13] HINSHELWOOD C N, EMMETTÁ B R. CCCCⅡ. The relation of homogeneous tocatalysed reactions. The catalytic decomposition of hydrogen iodide on the surface of platinum[J]. Journal of the Chemical Society, Transactions, 1925, 127:2896-2900.
[14] OOSAWA Y, KUMAGAI T, MIZUTA S, et al. Kinetics of the catalytic decomposition of hydrogen iodide in the magnesium-iodine thermochemical cycle[J]. Bulletin of the Chemical Society of Japan, 1981, 54(3):742-748.
[15] OOSAWA Y. The decomposition of hydrogen iodide and separation of the products by the combination of an adsorbent with catalytic activity and a temperature-swing method[J]. Bulletin of the Chemical Society of Japan, 1981, 54(10):2908-2912.
[16] WANG L J, ZHANG P, CHEN S Z, et al. Overview of the development of catalysts for HI decomposition in the iodine-sulfur thermochemical cycle at INET[J]. Nuclear Engineering and Design, 2014, 271:60-63.
[17] WANG L J, BAI S K, WANG Z C, et al. Activity and stability of Pt catalysts supported on carbon nanotubes, active carbon and γ-Al2O3 for HI decomposition in iodine-sulfur thermochemical cycle[J]. International Journal of Hydrogen Energy, 2012, 37(13):10020-10027.
[18] LINF Q, YANG M, LI C S, et al. Preparation of two-dimensional NiO/graphene composite and superior catalytic activity in benzene hydrogenation[J]. Materials Research Bulletin, 2015, 70:68-74.
[19] KUMAR P, SUN Y P, IDEM R O. Nickel-based ceria, zirconia, and ceria-zirconia catalytic systems for low-temperature carbon dioxide reforming of methane[J]. Energy & Fuels, 2007, 21:3113-3123.
[20] ZHANG Y W, FU G S, WANG Z H, et al. HI decomposition over carbon-based and Ni-impregnated catalysts of the sulfur-iodine cycle for hydrogen production[J]. Industrial & Engineering Chemistry Research, 2015, 54(5):1498-1504.
[21] FAVUZZA P, FELICI C, LANCHI M, et al. Decomposition of hydrogen iodide in the S-I thermochemical cycle over Ni catalyst systems[J]. International Journal of Hydrogen Energy, 2009, 34(9):4049-4056.
[22] 王毓宾, 戴幼雲, 刘静宜. 亚硝酸三(乙二胺)合镍的合成和性质[J]. 化学学报, 1965, 31(4):343-345. WANG Y B, DAI Y X, LIU J Y. Synthesis and properties of three nitrate(ethylene diamine) nickel synthesis[J]. Acta Chim. Sinica, 1965, 31(4):343-345.
[23] BABICH I V, PLYUTO Y V, LANGEVELD A D, et al. Role of the support nature in chemisorption of Ni(acac)2 on the surface of silica and alumina[J]. Applied Surface Science, 1997, 115:267-272. |