[1] DENG B, LI G, LUO J, et al. Enrichment of Sc2O3 and TiO2 from bauxite ore residues[J]. Journal of Hazardous Materials, 2017, 331:71-80.
[2] LIU W, CHEN X, LI W, et al. Environmental assessment, management and utilization of red mud in China[J]. Journal of Cleaner Production, 2014, 84:606-610.
[3] GU H, WANG N, LIU S. Radiological restrictions of using red mud as building material additive[J]. Waste Management & Research, 2012, 30(9):961-965.
[4] GELENCSER A, KOVATS N, TURÓCZI B, et al. The red mud accident in Ajka (Hungary):characterization and potential health effects of fugitive dust[J]. Environmental Science & Technology, 2011, 45:1608-1615.
[5] BORRA C R, BLANPAIN B, PONTIKES Y, et al. Recovery of rare earths and other valuable metals from bauxite residue (red mud):a review[J]. Journal of Sustainable Metallurgy, 2016, 2:365-386.
[6] DEADY EA, MOUCHOS E, GOODENOUGH K, et al. A review of the potential for rare-earth element resources from European red muds:examples from Seydisehir, Turkey and Parnassus-Giona, Greece[J]. Minerals Engineering, 2016, 80(1):43-61.
[7] KLAUBER C, GRÄFE M, POWER G. Bauxite residue issues Ⅱ. Options for residue utilization[J]. Hydrometallurgy, 2011, 108:11-32.
[8] LIU Y, LIN C, WU Y. Characterization of red mud derived from a combined Bayer process and bauxite calcination method[J]. Journal of Hazardous Materials, 2007, 146:255-261.
[9] GRÄFE M, POWER G, KLAUBER C. Bauxite residue issues:Ⅲ. Alkalinity and associated chemistry[J]. Hydrometallurgy, 2011, 108:60-79.
[10] HUANG W, WANG S, ZHU Z, et al. Phosphate removal from wastewater using red mud[J]. Journal of Hazardous Materials, 2008, 158:35-42.
[11] MERCURY J M R, CABRAL A A, PAIVA A E M, et al. Thermal behavior and evolution of the mineral phases of Brazilian red mud[J]. Journal of Thermal Analysis and Calorimetry, 2011, 104:635-643.
[12] CABLIK V. Characterization and applications of red mud from bauxite processing[J]. Gospodarka Surowcami Mineralnymi, 2007, 23:27-38.
[13] TEREKHOVA M V, GORICHEV I G, LAINER Y A, et al. Adsorption of dichromate ions on the red mud surface[J]. Russian Metallurgy (Metally), 2014(7):512-515.
[14] PARK H S, PARK J H. Vitrification of red mud with mine wastes through melting and granulation process——preparation of glass ball[J]. Journal of Non-Crystalline Solids, 2017, 475:129-135.
[15] AKINCI A, ARTIR R. Characterization of trace elements and radionuclides and their risk assessment in red mud[J]. Materials Characterization, 2008, 59:417-421.
[16] PASCUAL J, CORPAS F, LÓPEZ-BECEIRO J, et al. Thermal characterization of a Spanish red mud[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(2):407-412.
[17] SAMOUHOS M, TAXIARCHOU M, PILATOS G, et al. Controlled reduction of red mud by H2 followed by magnetic separation[J]. Minerals Engineering, 2017, 105:36-43.
[18] UZINGER N, ANTON A D, ÖTVÖS K, et al. Results of the clean-up operation to reduce pollution on flooded agricultural fields after the red mud spill in Hungary[J]. Environmental Science and Pollution Research, 2015, 22:9849-9857.
[19] ABBASI S M, RASHIDI A, GHORBANI A, et al. Synthesis, processing, characterization, and applications of red mud/carbon nanotube composites[J]. Ceramics International, 2016, 42:16738-16743.
[20] SGLAVO V M, CAMPOSTRINI R, MAURINA S, et al. Bauxite ‘red mud’ in the ceramic industry. Part 1:thermal behaviour[J]. Journal of the European Ceramic Society, 2000, 20:235-244.
[21] BALAKRISHNAN M, BATRA V S, HARGREAVES J S J, et al. Hydrogen production from methane in the presence of red mud-making mud magnetic[J]. Green Chemistry, 2009, 11:42-47.
[22] PEI D, LI Y, CANG D. Na+ -solidification behavior of SiO2-Al2O3-CaO-MgO (10wt%) ceramics prepared from red mud[J]. Ceramics International, 2017, 43:16936-16942.
[23] LIU S, GUAN X, ZHANG S, et al. Sintered Bayer red mud based ceramic bricks:microstructure evolution and alkalis immobilization mechanism[J]. Ceramics International, 2017, 43:13004-13008.
[24] YE N, CHEN Y, YANG J, et al. Transformations of Na, Al, Si and Fe species in red mud during synthesis of one-part geopolymers[J]. Cement and Concrete Research, 2017, 101:123-130.
[25] GUO Y, ZHAO Q, YAN K, et al. Novel process for alumina extraction via the coupling treatment of coal gangue and bauxite red mud[J]. Industrial & Engineering Chemistry Research, 2014, 53:4518-4521.
[26] QIN S, WU B. Reducing the radiation dose of red mud to environmentally acceptable levels as an example of novel ceramic materials[J]. Green Chemistry, 2011, 13:2423-2427.
[27] YE J, CONG X, ZHANG P, et al. Preparation of a new granular acid-activated neutralized red mud and evaluation of its performance for phosphate adsorption[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12):3324-3331.
[28] LIU S, GUAN X, ZHANG S, et al. Sintering red mud based imitative ceramic bricks with CO2 emissions below zero[J]. Materials Letters, 2017, 191:222-224.
[29] 王克勤, 李爱秀, 邓海霞, 等. 山西氧化铝赤泥的物化性质[J]. 轻金属, 2012(4):25-28. WANG K Q, LI A X, DENG H X, et al. Physicochemical properties of red mud in Shanxi[J]. Light Metals, 2012(4):25-28.
[30] ZHANG N, SUN H, LIU X, et al. Early-age characteristics of red mud-coal gangue cementitious material[J]. Journal of Hazardous Materials, 2009,167(1/2/3):927-932.
[31] GU H, WANG N, YANG Y, et al. Features of distribution of uranium and thorium in red mud[J]. Physicochemical Problems of Mineral Processing, 2017, 53(1):110-120.
[32] BOLANZ R M, KIEFER S, GÖTTLICHER J, et al. Hematite (α-Fe2O3)-A potential Ce4+ carrier in red mud[J]. Science of the Total Environment, 2018, 622/623:849-860.
[33] 熊大和. SLon-2000立环脉动高梯度磁选机的研制[J]. 金属矿山, 1995(6):32-34. XIONG D H. The development of SLon-2000 vertical ring and pulsating high gradient magnetic separator[J]. Metal Mine, 1995(6):32-34.
[34] 管建红. 采用脉动高梯度磁选机回收赤泥中铁的试验研究[J]. 江西有色金属, 2000, 14(4):15-18. GUAN J H. Study on recovering Fe from red mud with SLon vertical ring and pulsating high gradient magnetic separator[J]. Jiangxi Nonferrous Metals, 2000, 14(4):15-18.
[35] 徐淑安, 邵延海, 熊述清, 等. 疏水团聚-磁选法回收赤泥中微细粒铁矿试验[J]. 矿产综合利用, 2015(6):62-66. XU S A, SHAO Y H, XIONG S Q, et al. Experimental study on magnetic separation of hematite and limonite fines using magnetic seeding with selective hydrophobic flocculation from red mud[J]. Multipurpose Utilization of Mineral Resources, 2015(6):62-66.
[36] OHARA T, KUMAKURA H, WADA H. Magnetic separation using superconducting magnets[J]. Physica C, 2001, 357-360:1272-1280.
[37] LI Y, WANG J, WANG X, et al. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation[J]. Physica C, 2011, 471(3/4):91-96.
[38] 刘培坤, 姜兰越, 杨兴华, 等. 全重选法赤泥选铁富集性能试验研究[J]. 轻金属, 2017(6):22-27. LIU P K, JIANG L Y, YANG X H, et al. Separation performance study of recovering iron from red mud by gravity separation method[J]. Light Metals, 2017(6):22-27.
[39] 顾汉念, 王宁, 刘世荣, 等. 烧结法赤泥的物质组成与颗粒特征研究[J]. 岩矿测试, 2012, 31(2):312-317. GU H N, WANG N, LIU S R, et al. Study on material composition and particles characteristics of red mud from the sintering alumina process[J]. Rock and Mineral Analysis, 2012, 31(2):312-317.
[40] 葛琦, 王恒, 满毅, 等. 粒度对赤泥直接还原动力学的影响[J]. 化工进展, 2014, 33(12):3215-3220. GE Q, WANG H, MAN Y, et al. Effect of particle size on kinetics of direct reduction of red mud[J]. Chemical Industry and Engineering Progress, 2014, 33(12):3215-3220.
[41] LIU W, YANG J, XIAO B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues[J]. Journal of Hazardous Materials, 2009, 161:474-478.
[42] LI X, XIAO W, LIU W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19:1342-1347.
[43] LIU Y, ZUO K, YANG G, et al. Recovery of ferric oxide from Bayer red mud by reduction roasting-magnetic separation process[J]. Journal of Wuhan University of Technology (Mater. Sci. Ed), 2016, 31(2):404-407.
[44] 贾岩, 倪文, 王中杰, 等. 拜耳法赤泥深度还原提铁实验[J].北京科技大学学报, 2011, 33(9):1059-1064. JIA Y, NI W, WANG Z J, et al. Deep reduction experiments of Bayer red mud for iron recovery[J]. Journal of University of Science and Technology Beijing, 2011, 33(9):1059-1064.
[45] ZHU D, CHUN T, PAN J, et al. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt[J]. Journal of Iron & Steel Research International, 2012, 19(8):1-5.
[46] 黄柱成, 蔡凌波, 张元波, 等. Na2CO3和CaF2强化赤泥铁氧化物还原研究[J]. 中南大学学报(自然科学版), 2010, 41(3):838-844. HUANG Z C, CAI L B, ZHANG Y B, et al. Reduction of iron oxides of red mud reinforced by Na2CO3 and CaF2[J]. Journal of Central South University (Science and Technology), 2010, 41(3):838-844.
[47] LIU W, SUN S, ZHANG L, et al. Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na and Fe[J]. Minerals Engineering, 2012, 39:213-218.
[48] LIU Z, LI H. Metallurgical process for valuable elements recovery from red mud:a review[J]. Hydrometallurgy, 2015,155:29-43.
[49] SAMOUHOS M, TAXIARCHOU M, TSAKIRIDIS P E, et al. Greek "red mud" residue:a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process[J]. Journal of Hazardous Materials, 2013, 254/255:193-205.
[50] JAYASANKAR K, RAY P K, CHAUBEY A K, et al. Production of pig iron from red mud waste fines using thermal plasma technology[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(8):679-684.
[51] RATH S S, PANY A, JAYASANKAR K, et al. Statistical modeling studies of iron recovery from red mud using thermal plasma[J]. Plasma Science and Technology, 2013, 15(5):459-464.
[52] RASPOPOV N A, KORNEEV V P, AVERIN V V, et al. Reduction of iron oxides during the pyrometallurgical processing of red mud[J]. Russian Metallurgy (Metally), 2013, 1:33-37.
[53] BORRA C R, BLANPAIN B, PONTIKES Y, et al. Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery[J]. Journal of Sustainable Metallurgy, 2016, 2(1):28-37.
[54] 王洪,王静松,刘江, 等. 基于直接还原熔分的高铁赤泥综合利用试验研究[J]. 轻金属, 2013(1):19-22. WANG H, WANG J S, LIU J, et al. Experimental research on comprehensive utilization of the high iron red mud based on direct reduction and melting by RHF iron bead technology[J]. Light Metals, 2013(1):19-22.
[55] GUO Y, GAO J, XU H, et al. Nuggets production by direct reduction of high iron red mud[J]. Journal of Iron and Steel Research, International, 2013, 20:24-27.
[56] LIU Y, NAIDU R. Hidden values in bauxite residue (red mud):Recovery of metals[J]. Waste Management, 2014, 34:266-2673.
[57] 郝以党, 吴龙, 沈平, 等. 拜尔法赤泥精细还原实验研究[J]. 环境工程, 2015(1):105-108. HAO Y D, WU L, SHEN P, et al. Precise reduction experiment study of Bayer red mud[J]. Environmental Engineering, 2015(1):105-108.
[58] MAN Y, FENG J. Effect of gas composition on reduction behavior in red mud and iron ore pellets[J]. Powder Technology, 2016, 301:674-678.
[59] GOSTU S, MISHRA B, MARTINS G P. Low temperature reduction of hematite in red-mud to magnetite[M]//Light Metals. Berlin:Springer, 2017:67-73.
[60] GU H, HARGREAVES J S J, MCFARLANE A R, et al. The carbon deposits formed by reaction of a series of red mud samples with methanol[J]. RSC Advances, 2016, 6(52):46421-46426.
[61] 吴龙, 郝以党, 赵志国, 等. 超细粒度拜尔法赤泥氢还原动力学实验[J]. 工业加热, 2014, 43(6):32-35. WU L, HAO Y D, ZHAO Z G, et al. Reduction dynamic experiment study of ultrafine particles Bayer red mud by hydrogen[J]. Industrial Heating, 2014, 43(6):32-35.
[62] TAO G C, LESTANDER T A, GELADI P, et al. Biomass properties in association with plant species and assortments Ⅰ:a synthesis based on literature data of energy properties[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3481-3506.
[63] XIANG Q, LIANG X, SEHLESINGER M E, et al. Low-temperature reduction of ferric iron in red mud[M]//Light Metals. Switzerland:Springer Nature, 2001:157-162.
[64] 李恒, 刘晓明, 赵喜彬, 等. 生物质松木锯末中低温还原高铁拜耳法赤泥[J]. 工程科学学报, 2017, 39(9):1331-1338. LI H, LIU X M, ZHAO X B, et al. Medium-low temperature reduction of high-iron Bayer process red mud using biomass pine sawdust[J]. Chinese Journal of Engineering, 2017, 39(9):1331-1338.
[65] MAYORAL M C, IZQUIERDO M T, ANDRES J M, et al. Mechanism of interaction of pyrite with hematite as simulation of slagging and fireside tube wastage in coal combustion[J]. Thermochimica Acta, 2002, 390:103-111.
[66] LIU Y, ZHAO B, TANG Y, et al. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite[J]. Thermochimica Acta, 2014, 588:11-15.
[67] 谢武明,张宁,李俊, 等. 盐酸浸出提取赤泥中铝和铁的工艺条件优化[J]. 环境工程学报, 2017, 11(10):5677-5682. XIE W M, ZHANG N, LI J, et al. Optimization of condition for extraction of aluminum and iron from red mud by hydrochloric acid leaching[J]. Chinese Journal of Environmental Engineering, 2017, 11(10):5677-5682.
[68] LIU Z, ZENG K, ZHAO W, et al. Effect of temperature on iron leaching from bauxite residue by sulfuric acid[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82:55-58.
[69] UZUN D, GÜLFEN M. Dissolution kinetics of iron and aluminium from red mud in sulphuric acid solution[J]. Indian Journal of Chemical Technology, 2007, 14:263-268.
[70] PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud:recovery of Fe, Al, Ti, and Si[J]. Minerals Engineering, 2016, 99:8-18.
[71] AMBIKADEVI V R, LALITHAMBIKA M. Effect of organic acids on ferric iron removal from iron-stained kaolinite[J]. Applied Clay Science, 2000, 16:133-145.
[72] YU Z, SHI Z, CHEN Y, et al. Red-mud treatment using oxalic acid by UV irradiation assistance[J]. Transactions of Nonferrous Metals Society of China, 2012, 22:456-460.
[73] GU H, HARGREAVES J S J, JIANG J Q, et al. Potential routes to obtain value-added iron-containing compounds from red mud[J]. Journal of Sustainable Metallurgy, 2017, 3(3):561-569.
[74] YANG Y, WANG X, WANG M, et al. Recovery of iron from red mud by selective leach with oxalic acid[J]. Hydrometallurgy, 2015, 157:239-245.
[75] YANG Y, WANG X, WANG M, et al. Iron recovery from the leached solution of red mud through the application of oxalic acid[J]. International Journal of Mineral Processing, 2016, 157:145-151. |