[1] CHAN S H,STEMPIEN J P,DING O L,et al. Fuel cell and hydrogen technologies research,development and demonstration activities in Singapore-Au update[J]. Int. J. Hydogen Energ.,2016,41(32):13869-13878.
[2] YURDAKUL M,AYAS N,BIZKARRA K,et al. Preparation of Ni-based catalysts to produce hydrogen from glycerol by steam reforming process[sJ]. Int. J. Hydogen Energ.,2016,41(20):8084-8091.
[3] YOU Y W,MOON E H,HEO I,et al. Preparation and characterization of porous carbons from ion-exchange resins with different degree of cross-linking for hydrogen storage[J]. J. Ind. Eng. Chem.,2017,45:164-170.
[4] PENG W Q,LAN Z Q,WEI W L,et al. Investigation on preparation and hydrogen storage performance of Mg17Al12 alloy[J]. Int. J. Hydogen Energ.,2016,41(3):1759-1765.
[5] ALMASOUDI A,MOKAYA R. Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework[J]. J. Mater. Chem.,2012,22:146-152.
[6] DONG B X,TIAN H,WU Y C,et al. Improved electrolysis of liquid ammonia for hydrogen generation via ammonium salt electrolyte and Pt/Rh/Ir electrocatalysts[J]. Int. J. Hydogen Energ.,2016,41(33):14507-14518.
[7] 朱凌岳,王宝辉,吴红军. 电解水煤浆制氢技术研究进展[J]. 化工进展,2016,35(10):3129-3135. ZHU L Y,WANG B H,WU H J. Review on electrochemical splitting of coal water slurry for hydrogen[J]. Chemical Industry and Engineering Progress,2016,35(10):3129-3135.
[8] SELLAMI M H,LOUDIYI K. Electrolytes behavior during hydrogen production by solar energy[J]. Renew. Sust. Energ. Rev.,2017,70:1331-1335.
[9] 刘红梅,徐向亚,冯静,等. Ni/Al2O3催化剂上甲烷自热重整制合成气反应[J]. 石油化工,2016,45(2):149-155. LIU H M,XU X Y,FENG J,et al. Study on Ni/Al2O3 catalysts for methane autothermal reforming to syngas[J]. Petrochemical Technology,2016,45(2):149-155.
[10] 闫月君,刘启斌,隋军,等. 甲醇水蒸气催化重整制氢技术研究进展[J]. 化工进展,2012,31(7):1468-1476. YAN Y J,LIU Q B,SUI J,et al. Research progress of hydrogen production with methanol steam reforming[J]. Chemical Industry and Engineering Progress,2012,31(7):1468-1476.
[11] 李磊,郭瓦力,李俊磊,等. 丙三醇水蒸气重整制氢M/Al2O3催化剂[J]. 化工进展,2013,32(1):122-128. LI L,GUO W L,LI J L,et al. M/Al2O3 catalysts for hydrogen production via the steam reforming of glycerin[J]. Chemical Industry and Engineering Progress,2013,32(1):122-128.
[12] JUNG S H,CHOI B,PARK S,et al. Hydrogen production by compact combined dimethyl ether reformer/combustor for automotive applications[J]. Int. J. Hydrogen Energ.,2017,42(19):13463-13476.
[13] SONG C S,PAN W. Tri-reforming of methane:a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios[J]. Catal. Today,2004,98:463-484.
[14] CHOUDHARY T V,GOODMAN D W. CO-free production of hydrogen via stepwise steam reforming of methane[J]. J. Catal.,2000,192:316-321.
[15] CHOUDHARY T V,GOODMAN D W. Stepwise methane steam reforming:a route to CO-free hydrogen[J]. Catal. Lett.,1999,59:93-94.
[16] CHOUDHARY V R,BANERJEE S,RAJPUT A M. Hydrogen from step-wise steam reforming of methane over Ni/ZrO2:factors affecting catalytic methane decomposition and gasification by steam of carbon formed on the catalyst[J]. Appl. Catal. A:Gen.,2002,234(1/2):259-270.
[17] CHOUDHARY V R,BANERJEE S,RAJPUT A M. Continuous production of H2 at low temperature from methane decomposition over Ni-containing catalyst followed by gasification by steam of the carbon on the catalyst in two parallel reactors operated in cyclic manner[J]. J. Catal,2001,198(1):136-141.
[18] CHOUDHARY T V,SIVADINARAYANA C,CHUSUEI C,et al. Hydrogen production via catalytic decomposition of methane[J]. J. Catal.,2001,199(1):9-18.
[19] 郑文涛,李金刚,吴昊,等. 甲烷分步重整制氢催化剂研究进展[J]. 精细石油化工进展,2008,9(7):24-28. ZHENG W T,LI J G,WU H,et al. Research progress on catalysts for stepwise reforming of methane for hydrogen production[J]. Advances in Fine Petrochemicals,2008,9(7):24-28.
[20] 刘少文,李永丹. 甲烷重整制氢气的研究进展[J]. 武汉化工学院学报,2005,27(1):20-24. LIU S W,LI Y D. Research proceeding for methane reforming for hydrogen[J]. J. Wuhan Inst. Chem. Tech.,2005,27(1):20-24.
[21] LI Y D,CHEN J L,QIN Y N,et al. Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst[J]. Energ. Fuel.,2000,14(6):1188-1194.
[22] JAYAKUMAR S,ANANTHAPADMANABHAN P V,PERUMAL K,et al. Characterization of nano-crystalline ZrO2 synthesized via reactive plasma processing[J]. Mater. Sci. Eng. B,2011,176:894-899.
[23] SU C L,LI J R,HE D H,et al. Synthesis of isobutene from synthesis gas over nanosize zirconia catalysts[J]. Appl. Catal. A,2000,202(1):81-89.
[24] 魏俊梅,徐柏庆,孙科强,等. CO2重整CH4纳米ZrO2负载Ni催化剂的研究(Ⅱ)——催化剂组成与反应条件对催化剂性能的影响[J]. 高等学校化学学报,2002,23(11):2106-2111. WEI J M,XU B Q,SUN K Q,et al. CO2 reforming of CH4 over Ni supported on nano-ZrO2 (Ⅱ)-effect of catalyst composition and reaction conditions on catalytic reactivity[J]. Chem. J. Chinese Univ.,2002,23(11):2106-2111.
[25] ROSSETTIA I,BIFFIA C,CLAUDIA L,et al. Ni/SiO2 and Ni/ZrO2 catalysts for the steam reforming of ethanol[J]. Appl. Catal. B:Environ.,2012,117/118:384-396.
[26] SONG Y Q,HE D H,XU B Q. Effects of preparation methods of ZrO2 support on catalytic performances of Ni/ZrO2 catalysts in methane partial oxidation to syngas[J]. Appl. Catal. A:Gen.,2008,337(1):19-28. |