1 |
ZENG P , LIU Z , HU Z , et al . TiO2 nanotubular arrays loaded with Ni(OH)2: naked-eye visible photoswitchable color change induced by oxidative energy storage[J]. RSC Advances, 2013, 3 (45): 22853-22856.
|
2 |
ZHAO B , JIANG S , SU C , et al . A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage[J]. Journal of Materials Chemistry A, 2013, 1 (39): 12310-12320.
|
3 |
DENG D , KIM M G, LEE J Y, et al . Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries[J]. Energy & Environmental Science, 2009, 2(8): 818-837.
|
4 |
LEE E J, NAM I, YI J , et al . Nanoporous hexagonal TiO2 superstructure as a multifunctional material for energy conversion and storage[J]. Journal of Materials Chemistry A, 2015, 3 (7):3500-3510.
|
5 |
KIM M S, LEE T W, PARK J H . Controlled TiO2 nanotube arrays as an active material for high power energy-storage devices[J]. Journal of the Electrochemical Society, 2009, 156 (7): A584-A588.
|
6 |
ZHANG W , LIU Y , ZHOU D , et al . Photocatalytic activity of Ag nanoparticle-dispersed N-TiO2 nanofilms prepared by magnetron sputtering[J]. RSC Advances, 2015, 5 (70): 57155-57163.
|
7 |
MA D, YAN Y , JI H , et al . Photocatalytic activation of pyridine for addition reactions: an unconventional reaction feature between a photo-induced hole and electron on TiO2 [J]. Chemical Communications, 2015, 51(98):17451-17454.
|
8 |
NAKATO Y , AKANUMA H , SHIMIZU J , et al . Photo-oxidation reaction of water on an n-TiO2 electrode. Improvement in efficiency through formation of surface micropores by photo-etching in H2SO4 [J]. Journal of Electroanalytical Chemistry, 1995, 396(1/2): 35-39.
|
9 |
NAKATO Y , TSUMURA A , TSUBOMURA H . Photo- and electroluminescence spectra from an n-titanium dioxide semiconductor electrode as related to the intermediates of the photooxidation reaction of water[J]. The Journal of Physical Chemistry, 1983, 87 (13): 2402-2405.
|
10 |
KRAEUTLER B , BARD A J . Photoelectrosynthesisof ethane from acetate ion at an n-type titanium dioxide electrode. The photo-Kolbe reaction[J]. Journal of the American Chemical Society, 1977, 99 (23): 7729-7731.
|
11 |
GUO G , YU B , YU P , et al . Synthesis and photocatalytic applications of Ag/TiO2-nanotubes[J]. Talanta, 2009, 79 (3): 570-575.
|
12 |
HUANG L , PENG F , WANG H , et al . Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by electrochemical deposition[J]. Materials Chemistry and Physics, 2011, 130 (3): 316-322.
|
13 |
AMIN S A , PAZOUKI M , HOSSEINNIA A . Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli [J]. Powder Technology, 2009, 196 (3): 241-245.
|
14 |
YAN J , SONG H , YANG S , et al . Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries[J]. Electrochimica Acta, 2008, 53 (22): 6351-6355.
|
15 |
YOO J E, LEE K, SCHMUKI P . Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps[J]. Electrochemistry Communications, 2013, 34: 351-355.
|
16 |
ENACHI M , GUIX M , BRANISTE T , et al . Photocatalytic properties of TiO2 nanotubes doped with Ag, Au and Pt or covered by Ag, Au and Pt nanodots[J]. Surface Engineering and Applied Electrochemistry, 2015, 51(1): 3-8.
|
17 |
XIAO F . An efficient layer-by-layer self-assembly of metal-TiO2 nanoring/nanotube heterostructures, M/T-NRNT (M= Au, Ag, Pt), for versatile catalytic applications[J]. Chemical Communications, 2012, 48 (52): 6538-6540.
|
18 |
ISMAIL A A , BAHNEMANN D W , BANNAT I , et al . Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies[J]. The Journal of Physical Chemistry C, 2009, 113 (17): 7429-7435.
|
19 |
ANDERSON O , OTTERMANN C R , KUSCHNEREIT R , et al . Density and Young’s modulus of thin TiO2 films[J]. Fresenius'Journal of Analytical Chemistry, 1997, 358 (1): 315-318.
|
20 |
YANG F Q . Diffusion-induced stress in inhomogeneous materials: concentration-dependent elastic modulus[J]. Science China Physics,Mechanics and Astronomy, 2012, 55 (6): 955-962.
|
21 |
HASHIMOTO K , IRIE H , FUJISHIMA A . TiO2 photocatalysis: a historical overview and future prospects[J]. Japanese Journal of Applied Physics, 2005, 44: 8269-8285.
|
22 |
ZHOU D Y , LIANG W , ZHANG W G , et al . Well-aligned Au/TiO2 nanorods by magnetron sputtering with enhanced photocatalytic properties[J]. Journal of Nanoscience and Nanotechnology, 2018, 18 (6) :4397-4402.
|
23 |
MIYAUCHI M , IKEZAWA A , TOBIMATSU H , et al . Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films[J]. Chemistry Chemical Physics, 2004, 6 (4):865-870.
|
24 |
HUANG Q , GAO T , NIU F , et al . Preparation and enhanced visible-light driven photocatalytic properties of Au-loaded TiO2 nanotube arrays[J]. Superlattices and Microstructures, 2014, 75: 890-900.
|
25 |
LI Y , YU H , ZHANG C , et al . Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods[J]. International Journal of Hydrogen Energy, 2013, 38 (29): 13023-13030.
|
26 |
ZHOU D , LIU Y , ZHANG W , et al . Au-TiO2 nanofilms for enhanced photocatalytic activity[J]. Thin Solid Films, 2017, 636:490-498.
|
27 |
BAI Y , WANG P Q , LIU J Y , et al . Enhanced photocatalytic performance of direct Z-scheme BiOCl-gC3N4 photocatalysts[J]. RSC Advances, 2014, 4 (37) :19456-19461.
|
28 |
LI F B , LI X Z . The enhancement of photodegradation efficiency using Pt-TiO2 catalyst[J]. Chemosphere, 2002, 48 (10):1103-1111.
|
29 |
LU M . Photocatalysts and water purification: from fundamentals to recent applications[M]. John Wiley & Sons, 2013.
|
30 |
CHEN Y , TANG Y , LUO S , et al . TiO2 nanotube arrays co-loaded with Au nanoparticles and reduced graphene oxide: facile synthesis and promising photocatalytic application[J]. Journal of Alloys and Compounds, 2013, 578:242-248.
|
31 |
KAMAT P V , FLUMIANI M , DAWSON A . Metal-metal and metal-semiconductor composite nanoclusters[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202 (2):269-279.
|