[1] HEJZLAR P,DOSTAL V,DRISCOLL M J,et al. Assessment of gas cooled fast reactor with indirect supercritical CO2 cycle[J]. Nuclear Engineering and Technology,2006,38(2):443-445.
[2] DOSTAL V,HEJZLAR P,DRISCOLL M J. The supercritical carbon dioxide power cycle:comparison to other advanced power cCycles[J]. Nuclear Technology,2006,154(3):283-301
[3] CHACARTEGUI R,ESCALONA J M M D,SANCHEZ D,et al. Alternative cycles based on carbon dioxide for central receiver solar power plants[J]. Applied Thermal Engineering,2011,31(5):872-879.
[4] GARG P,KUMAR P,SRINIVASAN K. Supercritical carbon dioxide Brayton cycle for concentrated solar power[J]. Journal of Supercritical Fluids,2013,76(4):54-60.
[5] JEONG W S,LEE J I,YONG H J. Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR[J]. Nuclear Engineering and Design,2011,241(6):2128-2137.
[6] 段承杰,王捷,杨小勇. 反应堆超临界CO2 Brayton循环特性[J]. 原子能科学技术,2010,44(11):1341-1348. DUAN C J,WANG J,YANG X Y. Features of supercritical carbon dioxide Brayton cycle coupled with reactor[J]. Atomic Energy Science and Technology,2010,44(11):1341-1348.
[7] 廖吉香,刘兴业,郑群,等. 超临界CO2发电循环特性分析[J]. 热能动力工程,2016,31(5):40-46. LIAO J X,LIU X Y,ZHANG Q,et al. Analysis of the power generation cycle characteristics of supercritical carbon dioxide[J]. Journal of Engineering for Thermal Energy and Power,2016,31(5):40-46.
[8] 段承杰,杨小勇,王捷. 超临界二氧化碳布雷顿循环的参数优化[J]. 原子能科学技术,2011,45(12):1489-1494. DUAN C J,YANG X Y,WANG J. Parameters optimization of supercritical carbon dioxide Brayton cycle[J]. Atomic Energy Science and Technology,2011,45(12):1489-1494.
[9] SARKAR J. Second law analysis of supercritical CO2 recompression Brayton cycle[J]. Energy,2009,34(9):1172-1178.
[10] ZHAO H,DENG Q,HUANG W,et al. Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2 Brayton cycles[C]//ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. American Society of Mechanical Engineers,2015:15-19.
[11] AKBARI A D,MAHMOUDI S M S. Thermoeconomic analysis and optimization of the combined supercritical CO2 recompression Brayton/organic Rankine cycle[J]. Energy,2014,78:501-512.
[12] 吴毅,王佳莹,王明坤,等. 基于超临界CO2布雷顿循环的塔式太阳能集热发电系统[J]. 西安交通大学学报,2016,50(5):108-113. WU Y,WANG J Y,WANG M K,et al. A towered solar thermal power plant based on supercritical CO2 Brayton cycle[J]. Journal of Xi'an Jiaotong University,2016,50(5):108-113.
[13] REYES-BELMONTE M A,SEBASTIAN A,ROMERO M,et al. Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant[J]. Energy,2016,112:17-27.
[14] PADILLA R V,TOO Y C S,BENITO R,et al. Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers[J]. Applied Energy,2015,148:348-365.
[15] AL-SULAIMAN F A,ATIF M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower[J]. Energy,2015,82:61-71. |