[1] Björk K M,Nordman R. Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods[J]. Chemical Engineering and Processing:Process Intensification,2005,44(8):869-876. [2] 刘新文,罗行,马虎根. 换热网络改造可行性研究[J]. 节能,2013,32(3):12-15. [3] Linnhoff B,Vredeveld R. Pinch technology has come of age[J]. Chemical Engineering Progress,1984,80(7):33-40. [4] Westerberg A W. Synthesis in engineering design[J]. Computers & Chemical Engineering,1989,13(4):365-376. [5] Briones V,Kokossis A. New approach for the optimal retrofit of heat exchanger networks[J]. Computers & Chemical Engineering,1996,20:43-48. [6] Tjoe T N,Linnhoff B. Using pinch technology for process retrofit[J]. Chemical Engineering,1986,93(8):47-60. [7] Ciric A R,Floudas C A. A retrofit approach for heat exchanger networks[J]. Computers & Chemical Engineering,1989,13(6):703-715. [8] Ciric A R,Floudas C A. A mixed integer nonlinear programming model for retrofitting heat-exchanger networks[J]. Industrial & Engineering Chemistry Research,1990,29(2):239-251. [9] Yee T F,Grossmann I E. A screening and optimization approach for the retrofit of heat-exchanger networks[J]. Industrial & Engineering Chemistry Research,1991,30(1):146-162. [[1]0] Zhu X X,Asante N D K. Diagnosis and optimization approach for heat exchanger network retrofit[J]. AIChE Journal,1999,45(7):1488-1503. [[1]1] Bagajewicz M,Valtinson G,Nguyen Thanh D Q. Retrofit of crude units preheating trains:Mathematical programming versus pinch technology[J]. Industrial & Engineering Chemistry Research,2013,52(42):14913-14926. [[1]2] Pan M,Smith R,Bulatov I. A novel optimization approach of improving energy recovery in retrofitting heat exchanger network with exchanger details[J]. Energy,2013,57:188-200. [[1]3] Sreepathi B K,Rangaiah G P. Improved heat exchanger network retrofitting using exchanger reassignment strategies and multi-objective optimization[J]. Energy,2014,67:584-594. [[1]4] Björk K M,Westerlund T. Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption[J]. Computers & Chemical Engineering,2002,26(11):1581-1593. [[1]5] 魏关锋. 用遗传/模拟退火算法进行具有多流股换热器的换热网络综合[D]. 大连:大连理工大学,2003. [[1]6] 霍兆义. 基于分级超结构的换热网络同步综合与改造方法研究[D]. 大连:大连理工大学,2013. [[1]7] 赵亮. 考虑多因素的换热网络优化改造方法研究[D]. 大连:大连理工大学,2013. [[1]8] Liu X,Luo X,Ma H. Studies on the retrofit of heat exchanger network based on the hybrid genetic algorithm[J]. Applied Thermal Engineering,2014,62(2):785-790. [19] Gosselin L,Tye-Gingras M,Mathieu-Potvin F. Review of utilization of genetic algorithms in heat transfer problems[J]. International Journal of Heat and Mass Transfer,2009,52(9):2169-2188. [20] Wei G,Yao P,Luo X,et al. Study on multi-stream heat exchanger network synthesis with parallel genetic/simulated annealing algorithm[J]. Chinese Journal of Chemical Engineering,2004,12(1):66-77. [21] 吴敏,肖武,贺高红. 综合考虑泵的设备及运行费用的换热网络优化[J]. 化工进展,2014,33(3):599-604. [22] Panjeshahi M H,Tahouni N. Pressure drop optimisation in debottlenecking of heat exchanger networks[J]. Energy,2008,33(6):942-951. |