化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3608-3616.DOI: 10.16085/j.issn.1000-6613.2020-1539
收稿日期:
2020-08-04
修回日期:
2020-09-25
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
崔国民
作者简介:
徐玥(1991—),女,博士研究生。E-mail: 基金资助:
Received:
2020-08-04
Revised:
2020-09-25
Online:
2021-07-06
Published:
2021-07-19
Contact:
CUI Guomin
摘要:
应用节点非结构模型(nodes-based non-structural model,NNM)优化换热网络时,合理地配置节点参数(分流组数和分支数)可辅助算法以更高的效率获得更优的结果。然而,NNM模型的设置中,所有热流股共用一组节点参数,所有冷流股共用一组节点参数,因此无法定制化地满足每一个流股对分流的需求。为提高网络中节点的利用率,本文提出了节点配置策略。该策略可根据流股热容流率对流股上的分支数及其组数进行调整,减少无效结构对优化的阻碍,使算法在优化初期快速获得潜在优势结构,提升优化质量。通过10SP和15SP算例验证策略的有效性,所获结果比文献最优结果分别低340USD/a和2285USD/a,且低于同参数下无该节点配置策略的NNM模型所获结果,从算例分析可知该策略可有效辅助提升算法的优化性能,以获取更优的优化结果。
中图分类号:
徐玥, 崔国民. 基于节点配置策略的有分流换热网络优化性能探析[J]. 化工进展, 2021, 40(7): 3608-3616.
XU Yue, CUI Guomin. Analyzing optimization performance of heat exchanger network synthesis based on nodes' adjustment strategy[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3608-3616.
流股 | Tin /℃ | Tout /℃ | CF/kW·℃-1 | h/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 85 | 45 | 156.3 | 0.05 |
H2 | 120 | 40 | 50 | 0.05 |
H3 | 125 | 35 | 23.9 | 0.05 |
H4 | 56 | 46 | 1250 | 0.05 |
H5 | 90 | 86 | 1500 | 0.05 |
H6 | 225 | 75 | 50 | 0.05 |
C1 | 40 | 55 | 466.7 | 0.05 |
C2 | 55 | 65 | 600 | 0.05 |
C3 | 65 | 165 | 180 | 0.05 |
C4 | 10 | 170 | 81.3 | 0.05 |
HU | 200 | 180 | 0.05 | |
CU | 15 | 20 | 0.05 | |
热交换器成本=60A USD·a-1 (A in m2) | ||||
热公用工程成本= 100USD·kW-1·a-1 | ||||
冷公用工程成本=15USD·kW-1·a-1 |
表1 10SP 算例参数
流股 | Tin /℃ | Tout /℃ | CF/kW·℃-1 | h/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 85 | 45 | 156.3 | 0.05 |
H2 | 120 | 40 | 50 | 0.05 |
H3 | 125 | 35 | 23.9 | 0.05 |
H4 | 56 | 46 | 1250 | 0.05 |
H5 | 90 | 86 | 1500 | 0.05 |
H6 | 225 | 75 | 50 | 0.05 |
C1 | 40 | 55 | 466.7 | 0.05 |
C2 | 55 | 65 | 600 | 0.05 |
C3 | 65 | 165 | 180 | 0.05 |
C4 | 10 | 170 | 81.3 | 0.05 |
HU | 200 | 180 | 0.05 | |
CU | 15 | 20 | 0.05 | |
热交换器成本=60A USD·a-1 (A in m2) | ||||
热公用工程成本= 100USD·kW-1·a-1 | ||||
冷公用工程成本=15USD·kW-1·a-1 |
节点 | NdH | NdC | NfH | NfC | MbH | MbC | TAC/USD·a-1 | R-NfH | R-NfC | 分流所在流股 |
---|---|---|---|---|---|---|---|---|---|---|
A1 | 10 | 10 | 3 | 3 | 1 | 1 | 5586361 | 0 | 4 | C1 |
A2 | 6 | 6 | 5 | 5 | 1 | 1 | 5588318 | 0 | 8 | C1、C2、C4 |
B1 | 8 | 8 | 3 | 3 | 1 | 1 | 5586578 | 0 | 6 | C1、C4 |
B2 | 6 | 6 | 4 | 4 | 1 | 1 | 5587797 | 0 | 6 | C1、C2、C4 |
B3 | 12 | 12 | 2 | 2 | 1 | 1 | 5587211 | 0 | 4 | C1、C2 |
表2 不同节点参数下10SP算例的结果
节点 | NdH | NdC | NfH | NfC | MbH | MbC | TAC/USD·a-1 | R-NfH | R-NfC | 分流所在流股 |
---|---|---|---|---|---|---|---|---|---|---|
A1 | 10 | 10 | 3 | 3 | 1 | 1 | 5586361 | 0 | 4 | C1 |
A2 | 6 | 6 | 5 | 5 | 1 | 1 | 5588318 | 0 | 8 | C1、C2、C4 |
B1 | 8 | 8 | 3 | 3 | 1 | 1 | 5586578 | 0 | 6 | C1、C4 |
B2 | 6 | 6 | 4 | 4 | 1 | 1 | 5587797 | 0 | 6 | C1、C2、C4 |
B3 | 12 | 12 | 2 | 2 | 1 | 1 | 5587211 | 0 | 4 | C1、C2 |
i | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
NfH(i) | 1 | 1 | 1 | 3 | 3 | 1 |
NdH(i) | 30 | 30 | 30 | 10 | 10 | 30 |
j | 1 | 2 | 3 | 4 | ||
NfC(j) | 3 | 3 | 2 | 1 | ||
NdC(j) | 10 | 10 | 15 | 30 |
表3 NNM-AS模型中10SP算例各流股节点配置
i | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
NfH(i) | 1 | 1 | 1 | 3 | 3 | 1 |
NdH(i) | 30 | 30 | 30 | 10 | 10 | 30 |
j | 1 | 2 | 3 | 4 | ||
NfC(j) | 3 | 3 | 2 | 1 | ||
NdC(j) | 10 | 10 | 15 | 30 |
文献 | TAC/ USD·a-1 | 单元 | 热公用工程/MW | 冷公用工程/MW |
---|---|---|---|---|
[ | 7074000 | — | — | — |
[ | 5672821 | 13 | 20529.3 | 14923.8 |
[ | 5636048 | 15 | 20297 | 14691 |
[ | 5596079 | 18 | 20339 | 14733.5 |
[ | 5587883① | 19 | 20315.5 | 14711.9 |
[ | 5585632① | 17 | 19442.1 | 14837.3 |
本文 | 5585292① | 25 | 20216.2 | 14601.8 |
表4 10SP算例结果对比
文献 | TAC/ USD·a-1 | 单元 | 热公用工程/MW | 冷公用工程/MW |
---|---|---|---|---|
[ | 7074000 | — | — | — |
[ | 5672821 | 13 | 20529.3 | 14923.8 |
[ | 5636048 | 15 | 20297 | 14691 |
[ | 5596079 | 18 | 20339 | 14733.5 |
[ | 5587883① | 19 | 20315.5 | 14711.9 |
[ | 5585632① | 17 | 19442.1 | 14837.3 |
本文 | 5585292① | 25 | 20216.2 | 14601.8 |
流股 | Tin /℃ | Tout /℃ | CF/kW·℃-1 | h/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2 |
H2 | 280 | 120 | 60 | 1 |
H3 | 180 | 75 | 30 | 2 |
H4 | 140 | 40 | 30 | 1 |
H5 | 220 | 120 | 50 | 1 |
H6 | 180 | 55 | 35 | 2 |
H7 | 200 | 60 | 30 | 0.4 |
H8 | 120 | 40 | 100 | 0.5 |
C1 | 40 | 230 | 20 | 1 |
C2 | 100 | 220 | 60 | 1 |
C3 | 40 | 190 | 35 | 2 |
C4 | 50 | 190 | 30 | 2 |
C5 | 50 | 250 | 60 | 2 |
C6 | 90 | 190 | 50 | 1 |
C7 | 160 | 250 | 60 | 3 |
HU | 325 | 325 | 1 | |
CU | 25 | 40 | 2 | |
热交换器成本=8000+500A0.75 USD·a-1 (A in m2) | ||||
热公用工程成本=80USD·kW-1·a-1 | ||||
冷公用工程成本=10USD·kW-1·a-1 |
表5 15SP算例参数
流股 | Tin /℃ | Tout /℃ | CF/kW·℃-1 | h/kW·m-2·℃-1 |
---|---|---|---|---|
H1 | 180 | 75 | 30 | 2 |
H2 | 280 | 120 | 60 | 1 |
H3 | 180 | 75 | 30 | 2 |
H4 | 140 | 40 | 30 | 1 |
H5 | 220 | 120 | 50 | 1 |
H6 | 180 | 55 | 35 | 2 |
H7 | 200 | 60 | 30 | 0.4 |
H8 | 120 | 40 | 100 | 0.5 |
C1 | 40 | 230 | 20 | 1 |
C2 | 100 | 220 | 60 | 1 |
C3 | 40 | 190 | 35 | 2 |
C4 | 50 | 190 | 30 | 2 |
C5 | 50 | 250 | 60 | 2 |
C6 | 90 | 190 | 50 | 1 |
C7 | 160 | 250 | 60 | 3 |
HU | 325 | 325 | 1 | |
CU | 25 | 40 | 2 | |
热交换器成本=8000+500A0.75 USD·a-1 (A in m2) | ||||
热公用工程成本=80USD·kW-1·a-1 | ||||
冷公用工程成本=10USD·kW-1·a-1 |
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
NfH(i) | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 3 |
NdH(i) | 8 | 5 | 8 | 8 | 8 | 8 | 8 | 5 |
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
NfC(j) | 2 | 4 | 3 | 3 | 4 | 4 | 4 | |
NdC(j) | 8 | 4 | 6 | 6 | 4 | 4 | 4 |
表6 NNM-AS模型中15SP算例各流股节点配置
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
NfH(i) | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 3 |
NdH(i) | 8 | 5 | 8 | 8 | 8 | 8 | 8 | 5 |
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
NfC(j) | 2 | 4 | 3 | 3 | 4 | 4 | 4 | |
NdC(j) | 8 | 4 | 6 | 6 | 4 | 4 | 4 |
文献 | TAC/USD·a-1 | 单元 | 热公用工程 | 冷公用工程 |
---|---|---|---|---|
[ | 1513854 | — | — | — |
[ | 1530063① | — | — | — |
[ | 1527240 | 19 | 10.11 | 7.73 |
[ | 1525394 | 19 | ||
[ | 1510891① | 15 | 10.61 | 8.24 |
[ | 1507290① | 19 | — | — |
[ | 1501070① | 18 | 10.28 | 7.9 |
[ | 1497325① | 17 | — | — |
[ | 1494913① | 17 | 9.76 | 7.38 |
1492628① | 16 | 9.74 | 7.37 |
表7 15SP结果对比
文献 | TAC/USD·a-1 | 单元 | 热公用工程 | 冷公用工程 |
---|---|---|---|---|
[ | 1513854 | — | — | — |
[ | 1530063① | — | — | — |
[ | 1527240 | 19 | 10.11 | 7.73 |
[ | 1525394 | 19 | ||
[ | 1510891① | 15 | 10.61 | 8.24 |
[ | 1507290① | 19 | — | — |
[ | 1501070① | 18 | 10.28 | 7.9 |
[ | 1497325① | 17 | — | — |
[ | 1494913① | 17 | 9.76 | 7.38 |
1492628① | 16 | 9.74 | 7.37 |
1 | Fu YEE T, GROSSMANN I E. Simultaneous optimization models for heat integration (Ⅱ): Heat exchanger network synthesis [J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. |
2 | CHEN Shang, CUI Guomin. Uniformity factor of temperature difference in heat exchanger networks [J]. Applied Thermal Engineering, 2016, 102: 1366-1373. |
3 | PAVÃO L V, COSTA C, RAVAGNANI M. A new stage-wise superstructure for heat exchanger network synthesis considering substages, sub-splits and cross flows [J]. Applied Thermal Engineering, 2018, 143: 719-735. |
4 | PAVÃO L V, COSTA C, RAVAGNANI M. An enhanced stage-wise superstructure for heat exchanger networks synthesis with new options for heaters and coolers placement [J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2560-2573. |
5 | 鲍中凯, 崔国民, 曹冲, 等. 基于公用工程内置策略的换热网络优化[J]. 计算物理, 2019, 36(6): 707-718. |
BAO Zhongkai, CUI Guomin, CAO Chong, et al. Heat exchanger network optimization based on inner utility placement strategy [J]. Chinese Journal of Computational Physics, 2019, 36(6): 707-718. | |
6 | PONCE-ORTEGA J M, SERNA-GONZÁLEZ M, JIMÉNEZ-GUTIÉRREZ A. Synthesis of heat exchanger networks with optimal placement of multiple utilities [J]. Industrial Engineering Chemical Research, 2010, 49: 2849-2856. |
7 | NA Jonggeol, JUNG Jaeheum, PARK Chansaem, et al. Simultaneous synthesis of a heat exchanger network with multiple utilities using utility substages [J]. Computers and Chemical Engineering, 2015, 79: 70-79. |
8 | HONG Xiaodong, LIAO Zuwei, SUN Jingyuan, et al. Trasshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams [J]. Energy, 2019(178): 853-866. |
9 | HONG Xiaodong, LIAO Zuwei, JIANG Binbo, et al. New transshipment type MINLP model for heat exchanger network synthesis [J]. Chemical Engineering Science. 2017, 173: 537-559. |
10 | HONG Xiaodong, LIAO Zuwei, SUN Jingyuan, et al. Indirect heat integration across plants: novel representation of intermediate fluid circles [J]. I&EC Research, 2019, 58: 7233-7246. |
11 | 刘璞, 崔国民, 肖媛, 等. 具有步长调整策略的强制进化随机游走算法优化换热网络[J]. 化工进展, 2017, 36(2): 442-450. |
LIU Pu, CUI Guomin, XIAO Yuan, et al. Optimizing heat exchanger network by random walking algorithm with compulsive evolution combined with step length adjustment strategy [J]. Chemical Industry and Engineering Progress, 2017, 36(2): 442-450. | |
12 | 苏戈曼, 崔国民, 鲍中凯, 等. RWCE优化换热网络的不可行解影响分析及强化策略[J]. 化工进展, 2020, 39(1): 14-25. |
SU Geman, CUI Guomin, BAO Zhongkai, et al. Influence analysis and enhancement strategy of infeasible solutions for heat exchanger network optimization with RWCE [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 14-25. | |
13 | 邓炜栋, 崔国民, 陈家星, 等. 带惩罚的逆梯度进化算法应用于换热网络[J]. 化工进展, 2018, 37(7): 2500-2509. |
DENG Weidong, CUI Guomin, CHEN Jiaxing, et al. Heat exchange network optimization by inverse gradient evolution strategy with penalty [J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2500-2509. | |
14 | 肖媛. 换热网络热集成的全局优化方法及超结构模型研究[D]. 上海: 上海理工大学, 2019. |
XIAO Yuan. Global optimization methods and superstructure model for heat integration of heat exchanger networks [D]. Shanghai: University of Shanghai for Science & Technology, 2019. | |
15 | XU Yue, KAYANGE H A, CUI Guomin. A nodes-based non-structural model considering a series structure for heat exchanger network synthesis [J]. Processes, 2020, 8(695): 1-16. |
16 | XIAO Yuan, CUI Guomin. A novel random walk algorithm with compulsive evolution for heat exchanger network synthesis [J]. Applied Thermal Engineering, 2017, 115: 1118-1127. |
17 | AHMAD S. Heat exchanger networks: cost tradeoffs in energy and capital [D]. Manchester: University of Manchester Institute of Science and Technology, 1985. |
18 | BAO Zhongkai, CUI Guomin, CHEN Jiaxing, et al. A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis [J]. Energy, 2018, 152: 694-708. |
19 | 孙涛, 崔国民, 陈家星, 等. 采用分流比差异优化策略RWCE算法优化换热网络[J]. 工程热物理学报, 2019, 40(1): 183-190. |
SUN Tao, CUI Guomin, CHEN Jiaxing, et al. Split ratio difference optimization strategy of RWCE algorithm for heat exchanger network synthesis [J]. Journal of Engineering Thermophysics, 2019, 40(1): 183-190. | |
20 | 陈子禾, 崔国民, 徐玥, 等. 基于控制参数动态协调策略的换热网络优化研究[J]. 工程热物理学报, 2020, 41(4): 957-965. |
CHEN Zihe, CUI Guomin, XU Yue, et al. Study on heat exchanger network optimization based on dynamic coordination strategy of control parameters [J]. Journal of Engineering Thermophysics, 2020, 41(4): 957-965. | |
21 | RAVAGNANI M, SILVA A P, ARROYO P A, et al. Heat exchanger network synthesis and optimization using genetic algorithm [J]. Applied Thermal Engineering, 2005, 25(7): 1003-1017. |
22 | 彭富裕, 崔国民, 陈家星. 基于模拟退火算法的换热网络双层优化方法[J]. 石油化工, 2014, 43(5): 536-544. |
PENG Fuyu, CUI Guomin, CHEN Jiaxing. Bilevel optimization method for heat exchanger network synthesis based on simulated annealing algorithm [J]. Petrochemical Technology, 2014, 43(5): 536-544. | |
23 | PENG Fuyu, CUI Guomin. Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm[J]. Applied Thermal Engineering, 2015, 32(6): 693-700. |
24 | BJÖRK K M, PETTERSSON F. Optimization of large-scale heat exchanger network synthesis problems [C]// Proceeding of the ISATED International Conference on Modelling and Simulation. Palm Springs. USA, 2003: 313-318. |
25 | BJÖRK K M, NORDMAN R. Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods [J]. Chemical Engineering and Process, 2005, 44: 869-876. |
26 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. Heat exchanger network synthesis without stream splits using parallel and simplified simulated annealing and particle swarm optimization [J]. Chemical Engineering Science, 2017, 158: 96-107. |
27 | FIEG G, LUO Xing, JEZOWSKI J. A monogenetic algorithm for optimal design of large-scale heat exchanger networks [J]. Chemical Engineering and Process, 2009, 48: 1506-1516. |
28 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization [J]. AIChE Journal, 2007, 63: 1582-1601. |
29 | MATTHIAS R, GEORG F. A novel hybrid strategy for cost-optimal heat exchanger network synthesis suited for large-scale problems [J]. Applied Thermal Engineering, 2020, 167: 114771. |
30 | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S, et al. Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach [J]. Applied Energy, 2017, 203: 304-320. |
31 | 徐玥, 崔国民. 应用结构摄动策略的有分流换热网络优化[J]. 计算物理, 2020(1): 1-12. |
XU Yue, CUI Guomin. The heat exchanger network optimization using structural perturbation strategy [J]. Chinese Journal of Computational Physics, 2020(1): 1-12. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[3] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[4] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[5] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[8] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[9] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[10] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[11] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[12] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[13] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[14] | 张智琛, 朱云峰, 成卫戍, 马守涛, 姜杰, 孙冰, 周子辰, 徐伟. 高压聚乙烯失控分解研究进展:反应机理、引发体系与模型[J]. 化工进展, 2023, 42(8): 3979-3989. |
[15] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 612
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 306
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |