[1] 韦正乐, 黄碧纯, 叶代启, 等. 烟气NO低温选择性催化还原催化剂研究进展[J]. 化工进展, 2007, 26(3):320-325. [2] 谭青, 冯雅晨. 我国烟气脱硝行业现状与前景及SCR脱硝催化剂的研究进展[J]. 化工进展, 2011, 30(s1):709-713. [3] 沈伯雄, 施建伟, 杨婷婷, 等. 选择性催化还原脱氮催化剂的再生及其应用评述[J]. 化工进展, 2008, 27(1):64-67. [4] 杨超, 程华, 黄碧纯. 抗SO2和H2O中毒的低温NH3-SCR脱硝催化剂研究进展[J]. 化工进展, 2014, 33(4):907-913. [5] 于国锋, 顾月平, 金瑞奔.Mn/TiO2和Mn-Ce/TiO2低温脱硝催化剂的抗硫性研究[J].环境科学学报, 2013, 33(8):2149-2157. [6] Yang Shijian, Guo Yongfu, Chang Huazhen, et al. Novel effect of SO2 on the SCR reaction over CeO2:Mechanism and significance[J]. Applied Catalysis B:Environmental, 2013, 136-137:19-28. [7] Gu Tingting, Jin Ruiben, Liu Yue, et al. Promoting effect of calcium doping on the performances of MnOx/TiO2 catalysts for NO reduction with NH3 at low temperature[J]. Applied Catalysis B:Environmental, 2013, 129:30-38. [8] Jiang Haoxi, Zhao Jing, Jiang Dongyu, et al. Hollow MnOx-CeO2 nanospheres prepared by a green route:A novel low-temperature NH3-SCR catalyst[J]. Catalysis Letters, 2014, 144 :325-332. [9] Jin R B, Liu Y, Wu Z B, et al. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Applied Catalysis B:Environmental, 2014, 148-149:582-588. [10] Ji Y, Toops T, Crocker M. Effect of ceria on the sulfation and desulfation characteristics of a model lean NOx trap catalyst[J]. Catalysis Letters, 2008, 127(1-2):55-62. [11] Qi G S, Ralph T Yang. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. Journal of Catalysis, 2003, 217:434-441. [12] Liu Zhiming, Zhu Junzhi, Li Junhua, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Appl. Mater. Interfaces, 2014, 6(16):14500-14508. [13] Wu Z B, Jin R B, Wang H Q, et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J]. Catalysis Communications, 2009, 10(6):935-939. [14] Jiang B Q, Wu Z B, Liu Y, et al. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2[J]. The Journal of Physical Chemistry C, 2010, 116:4961-4965. [15] Liu Fudong, He Hong, Zhang Changbin, et al. Selective catalytic reduction of NO with NH3 over iron titanate catalyst:Catalytic performance and characterization[J]. Applied Catalysis B:Environmental, 2010, 96:408-420. [16] Kijlstra W S, Biervliet M, Poels E K, et al. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction[J]. Applied Catalysis B:Environmental, 1998, 16:327-337. [17] Chang H Z, Ma L, Yang S J, et al. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR[J]. Journal of Hazardous Materials, 2013, 262:782-8. [18] Park Tae Sung, Jeong Soon Kwan, Hong Sung Ho, et al. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature[J]. Ind. Eng. Chem. Res., 2001, 40:4491-4495. [19] Xie G Y, Liu Z Y, Zhu Z P, et al. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent I. Deactivation of SCR activity by SO2 at low temperatures[J]. Journal of Catalysis, 2004, 224(1):36-41. [20] Ji Y Y, Todd J Toops, Josh A Pihl, et al. NOx storage and reduction in model lean NOx trap catalysts studied by in situ DRIFTS[J]. Applied Catalysis B:Environmental, 2009, 91(1-2):329-338. [21] Peralta M A, Milt V G, Cornaglia L M, et al. Stability of Ba, K/CeO2 catalyst during diesel soot combustion:Effect of temperature, water, and sulfur dioxide[J]. Journal of Catalysis, 2006, 242:118-130. [22] Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase:Relationships between surface morphology and chemical behaviour[J]. Applied Catalysis A:General, 2000(200):275-285. [23] Jin R B, Liu Y, Wu Z B, et al. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst[J]. Catalysis Today, 2010, 153(3-4):84-89. [24] Sheng Z Y, Hu Y F, Xue J M, et al. SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst for low temperature NOx reduction with NH3[J]. Journal of Rare Earths, 2012, 30(7):676-682. [25] Panagiotis G Smirniotis, Pavani M Sreekanth, Donovan A Peña, et al. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2:A comparison for low-temperature SCR of NO with NH3[J]. Ind. Eng. Chem. Res., 2006, 45(19):6436-6443. [26] Costello C K, Yang J H, Law H Y, et al. On the potential role of hydroxyl groups in CO oxidation over Au/A12O3[J]. Applied Catalysis A:General, 2003, 243:15-24. [27] Cao F, Xiang J, Su S, et al. The activity and characterization of MnOx-CeO2-ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2014, 243:347-354. [28] Yin C Y, Wei Y J, Wang F W, et al. Introduction of mesopority in zeolite ZSM-5 using resin as templates[J]. Materials Letters, 2013, 98:194-196. [29] Zhang D S, Zhang L, Fang C, et al. MnOx-CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3[J]. RSC Adv., 2013, 3:8811-8819. [30] Carja G, Kameshima Y, Okada K, et al. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3[J]. Applied Catalysis B:Environmental, 2007, 73:60-64. [31] 金瑞奔. 负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究[D].杭州:浙江大学, 2010. [32] Shen B X, Wang Y Y, Wang F M, et al. The effect of Ce-Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chemical Engineering Journal, 2014, 236:171-180. [33] Zhang X P, Shen B X, Wang K, et al. A contrastive study of the introduction of cobalt as a modifier for active components and supports of catalysts for NH3-SCR[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(4):1272-1279. [34] Kang M, Tae Hun Yeon, Jae Eui Yie, et al. Novel MnOx catalysts for NO reduction at low temperature with ammonia[J]. Catalysis Letters, 2006, 106(1-2):77-80. [35] Sheng Zhongyi, Hu Yufeng, Xue Jianming, et al. A novel co-precipitation method for preparation of Mn-Ce/TiO2 composites for NOx reduction with NH3 at low temperature[J]. Environmental Technology, 2012, 33(21):2421-2428. [36] Yu J, Guo F, Gao S Q, et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B:Environmental, 2010, 95(1-2):160-168. [37] Lu Xining, Song Cunyi, Chang Chein-Chig, et al. Manganese oxides supported on TiO2-graphene nanocomposite catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. Ind. Eng. Chem. Res., 2014, 53:11601-11610. [38] Qu L, Li C T, Zeng G M, et al. Support modification for improving the performance of MnOx-CeOy/γ-Al2O3 in selective catalytic reduction of NO by NH3[J]. Chemical Engineering Journal, 2014, 42:76-85. [39] Li Le, Diao Yongfa, Liu Xin. Ce-Mn mixed oxides supported on glass-fiber for low-temperature selective catalytic reduction of NO with NH3[J]. Journal of Rare Earths, 2014, 32(5):409-415. [40] Tang Xiaolong, Hao Jiming, Yi Honghong, et al. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts[J]. Catal. Today, 2007, 126:406-411. [41] Shen B X, Liu T, Yang X Y, et al. MnOx/Ce0.6Zr0.4O2 catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Environmental Engineering Science, 2011, 28(4):291-298. [42] Shen B X, Wang F M, Liu T. Homogeneous MnOx-CeO2 pellets prepared by a one-step hydrolysis process for low-temperature NH3-SCR[J]. Powder Technology, 2014, 253:152-157. [43] Chang H Z, Li J H, Chen X Y, et al. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures[J]. Environmental science & technology, 2013, 47(10):5294-301. [44] Chang H Z, Li J H, Chen X Y, et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia:Enhancement of activity and remarkable resistance to SO2[J]. Catalysis Communications, 2012, 27:54-57. [45] Shen B X, Liu T, Zhao N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences, 2010, 22(9):1447-1454. [46] Peng Y, Li J H, Shi W B, et al. Design strategies for development of SCR catalyst:Improvement of alkali poisoning resistance and novel regeneration method[J]. Environmental science & technology, 2012, 46(22):12623-9. [47] Liu Y, Cen W L, Wu Z B, et al. SO2 poisoning structures and the effects on pure and Mn doped CeO2:A first principles investigation[J]. The Journal of Physical Chemistry C, 2012, 116(43):22930-22937. [48] Lu Z S, Carsten Müller, Yang Z X, et al. SOx on ceria from adsorbed SO2[J]. The Journal of Chemical Physics, 2011, 134(18):184703. |