[1] 陈军,陶占良. 能源化学[M]. 第2版. 北京:化学工业出版社,2014:359.[2] 李俊涛,周艳,张红军,等. 葡萄糖加氢制山梨醇催化剂的研究进展[J]. 河南化工,2008,25(10):6-8.[3] 徐雷金,孔令鸟,刘维,等. Raney-Ni催化剂制备及在葡萄糖加氢合成山梨醇中的应用[J]. 化工生产与技术,2013,20(6):36-41,52.[4] Hoffer B W,Crezee E,Devred F,et a1. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of D-glucose to D-sorbitol[J].Applied Catalysis A:General,2003(253):437-452.[5] 刘维,张群峰,李小年. 钼改性雷尼镍催化剂的葡萄糖加氢性能.[J] 工业催化,2010,18(11):36-40.[6] 杜文强,王越,吕连海. 非晶态 NiMoAl合金催化葡萄糖加氢制备山梨醇[J]. 精细化工,2007,24(12):1204-1206.[7] Chen L,Wang S,Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angew. Chem. Int. Ed.,2007,46:7636-7639.[8] Zhu W W,Yang H M,Chen J Z,et al. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst[J]. Green Chemistry,2014,16(3):1534-1542.[9] Xi J X,Zhang Y,Xia Q N,Liu X H,et al. Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported ruthenium bifunctional catalyst[J]. Applied Catalysis A:General,2013,459:52-58.[10] Palkovits R,Tajvidi K,Ruppert AM,et al. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols[J]. Chem. Commun.,2011,47:576-578.[11] Fukuoka A,Dhepe P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie:International Edition,2006,45(31):5161-5163.[12] Van de Vyver S,Geboers J,Schutyser W,et al. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose[J]. ChemSusChem.,2012,5(8):1549-1558.[13] Hilgert J,Meine N,Rinaldi R,et al. Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols[J]. Energy & Environmental Science,2013,6(1):92-96.[14] Bottoms R R. Hydrogenolysis of polyhydric alcohols:US,2335731[P].1943-11-30.[15] Miller Aaron B,Raghunath Malati,Sokolovskii Valery,et al. Catalyst for polyol hydrogenolysis:US,20140249334[P]. 2014-09-04.[16] Blaise J Arena. Hydrocracking of polyols:US,4496780[P]. 1985-01-29.[17] 周静红,王雪峰,刘国才,等. 固体碱负载Ru催化山梨醇氢解制备低碳二元醇[J]. 化工学报,2014,65(7):2762-2769.[18] 陈洁静,孙兆林,宋丽娟,等. 镍钌/黏土催化糖醇混合物氢解制低碳二元醇[J]. 石油化工,2012,41(4):401-404.[19] 刘琪英,廖玉河,石宁,等. 生物质多元醇选择性催化氢解制小分子二元醇研究进展[J]. 化工进展,2013,32(5):1035-1042.[20] Wang K Y,Hawley M C,Furney T D.Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds[J]. Industrial & Engineering Chemistry Research,1995,34(11):3766-3770.[21] Liu G C,Zhou J H,Sui Z J,et al. Hydrogenolysis of sorbitol to glycols over carbon nanofibers supported ruthenium catalyst:The role of base promoter[J]. Chin. J. Catal., 2014, 35(5):692-702.[22] Sun J Y,Liu H C. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts[J]. Green Chemistry,2011,13:135-142.[23] Li N,Huber G W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-A12O3:Identification of reaction intermediates[J]. Journal of Catalysis,2010,270:48-59.[24] 徐周文. 一种由山梨醇裂解生产二元醇和多元醇的方法:中国,1683293[P]. 2005-10-19.[25] Zhao Guanhong,Zheng Mingyuan,Zhang Junying,et al. Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system[J]. Ind. Eng. Chem. Res.,2013,52:9566-9572.[26] Roselinde Ooms,Michiel Dusselier,Jan A Geboers,et al. Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor:High productivity and reaction network elucidation[J]. Green Chemistry,2014,16:695-707.[27] Ji Na,Zhang Tao,Zheng Mingyuan,et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew. Chem. Int. Ed.,2008,47:8510-8513.[28] 张涛,纪娜,郑明远,等. 碳化钨催化剂及其制备和在纤维素制乙二醇反应中的应用:中国,101648140[P]. 2010-02-17.[29] Ji N,Zheng M Y,Wang A Q,et al. Nickel-promoted tungsten carbide catalysts for cellulose conversion:Effect of preparation methods[J]. ChemSusChem,2012,5:939-944.[30] Zhang Yanhua,Wang Aiqin,Zhang Tao. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem. Commun.,2010,46(6):862-864.[31] Wang Hongjuan,Zhu Lili,Peng Song,et al. High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst[J]. Renewable Energy,2012,37(1):192-196.[32] Wang Xicheng,Meng Lingqian,Wu Feng,et al. Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts[J]. Green Chemistry,2012,14(3):758-765.[33] Xiao Zihui,Jin Shaohua,Pang Min,et al. Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly effcient CuCr catalysts[J]. Green Chemistry,2013,15(4):891-895.[34] Tai Zhijun,Zhang Junying,Wang Aiqin,et al. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chemical Communications,2012,48(56):7052-7054.[35] Pang J F,Zheng M Y,Wang A Q,et al. Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glyco[J]. Ind. Eng. Chem. Res.,2011,50:6601-6608.[36] Pang J F,Zheng M Y,Wang A Q,et al. Catalytic conversion of concentrated miscanthus in water for ethylene glycol production[J]. AIChE J.,2014,60(6):2254-2262.[37] Pang Jifeng,Zheng Mingyuan,Sun Ruiyan,et al. Catalytic conversion of cellulosic biomass to ethylene glycol:Effects of inorganic impurities in biomass[J]. Bioresource Technology,2015,175:424-429.[38] Spodsberg Nikolaj. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same:WO,2012103293[P]. 2012-08-02.[39] Morant Marc, Patkar Shamkant,Ding Hanshu,et al. Polypeptides having beta-glucosidase activity and polynucleotides encoding same:WO,2012003379[P]. 2012-01-05.[40] 钱伯章. 诺维信及M&G化学品公司合作在中国生产生物基塑料[J]. 聚酯工业,2014,27(2):35-35.[41] 刘颖. 以小麦秸杆为原料生产乙二醇的可行性探索[J]. 广州化工,2012,40(17):83-84.[42] Peter Kalagias. Processes for isolating or purifying propylene glycol,ethylene glycol and products produced therefrom:US,20080275277[P]. 2008-11-06.[43] 凯文·阿德拉夫,P D 布鲁姆,威廉·克里斯·霍夫曼,等. 用于产生生物衍生的丙二醇的改进的方法:中国,103402955[P]. 2013-11-20.[44] 陈力群. 生物基PDT®聚酯产品性能研究[J]. 国际纺织导报,2014(3):36-40. |