[1] 李怀辉,王小平,王丽军,等. 硅半导体太阳能电池进展[J]. 材料导报,2011(19):49-53.[2] 宋鑫. 量子点敏化太阳能电池:制备及光电转换性能的改进[D]. 天津:天津大学,2010.[3] 车玉萍,翟锦. 新型纳米材料/结构在光电转化中的应用[J]. 中国科学:化学,2015(3):262-82.[4] Tian J,Cao G. Semiconductor quantum dot-sensitized solar cells[J]. Nano Rev.,2013,4:22578.[5] 杨健茂,胡向华,田启威,等. 量子点敏化太阳能电池研究进展[J]. 材料导报,2011,25(23):1-4.[6] 孟庆波. 量子点太阳能电池技术概况[J]. 新材料产业,2013(3):61-63.[7] Wang H,Luan C,Xu X,et al. In situ versus ex situ assembly of aqueous-based thioacid capped CdSe nanocrystals within mesoporousTiO2 films for quantum dot sensitized solar cells[J]. J. Phys. Chem.C.,2011,116(1):484-489.[8] Tvrdy K,Kamat P V. Substrate driven photochemistry of CdSe quantum dot films:Charge injection and irreversible transformationson oxide surfaces[J]. J. Phys. Chem. A,2009,113(16):3765-3772.[9] Tvrdy K,Frantsuzov P A,Kamat P V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles[J]. Proc. Natl. Acad. Sci. USA,2011,108:29-34.[10] Chakrapani V,Baker D,Kamat P V. Understanding the role of the sulfide redox couple (S2-/Sn2-) in quantum dot-sensitized solar cells[J]. J. Am. Chem. Soc.,2011,133:9607-9615.[11] 毛永强. 量子点材料的结构设计、生化分析及光电转换的研究[D]. 天津:天津大学,2012.[12] 黄婵燕,陶俊超,刘玉峰,等. TiO2纳米管的制备及其在太阳能电池中的应用[J]. 上海有色金属,2011(02):89-94.[13] Jin-nouchi Y,Naya S,Tada H. Quantum dot-sensitized solar cell using a photoanode prepared by in situ photodeposition of CdS on nanocrystalline TiO2 films[J]. J. Phys. Chem. C,2010,114(39):16837-16842.[14] Lee H,Wang M,Chen P,et al. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process[J]. Nano Lett.,2009,9(12):4221-4227.[15] 孟庆波. 二十年磨一剑:新型太阳能电池[J]. 化学学报,2015(3):161-162.[16] 吴晓春,陈文驹. 半导体量子点电子结构理论研究的进展[J]. 物理,1995(4):218-223.[17] Lan J,Wei T,Feng S,et al. Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities[J]. J. Phys. Chem. C,2012,116(49):25727-25733.[18] Wolfbauer G,Bond A M,MacFarlane D R. A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye-sensitized solar cells[J]. Sol. Energy Mater. Sol. Cells,2001,70:85-101.[19] 舒婷. 量子点敏化太阳能电池电解质的研究进展[J]. 化学工程师, 2013,27(4):42-44.[20] Wang X,Zhu H J,Xu Y M,et al. Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide:Synthesis and photoelectrochemical properties[J]. ACS Nano,2010,4(6):3302-3308.[21] Fan S,Fang B,Kim J H,et al. Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum dot solar cells[J]. Langmuir,2010,26(16):13644-13649.[22] 蔡小梅,陈福义,介万奇. SiO2/CdS光子晶体的制备及其光学性能[J]. 功能材料,2006(08):1201-1203.[23] Tang Z,Yin X,Zhang Y,et al. Synthesis of titanate nanotube CdS nanocomposites with enhanced visible light photocatalytic activity[J]. J. Inorg. Chem.,2013,52(20):11758-11766.[24] Tak Y,Hong S J,Lee J S,et al. Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array[J]. Cryst. Growth Des.,2009,9(6):2627-2632.[25] 杜运兴. ZnS荧光量子点的油水界面法合成及发光性质研究[D]. 上海:东华大学,2011.[26] Kortan A R,Hull R,Opila R L,et al. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds,and vice versa,in inverse micelle media[J]. J. Am. Chem. Soc.,1990,112(4):1327-1332.[27] Tian J,Gao R,Zhang Q,et al. Enhanced performance of CdS/CdSe quantum dot-sensitized solar cells via homogeneous distribution of quantum dots in TiO2 film[J]. J. Phys. Chem. C,2012,116(35):18655-18662.[28] 王海平. 一维纳米材料的合成及其在量子点敏化太阳能电池中的应用[D]. 兰州:兰州大学,2010.[29] Margraf J T,Ruland A,Sgobba V,et al. Quantum dot-sensitized solar cells:Understanding linker molecules through theory and experiment [J]. Langmuir,2013,29(7):2434-2438.[30] Yun H J,Paik T, Edley M E,et al. Enhanced charge transfer kinetics of CdSe quantum dot-sensitized solar cell by inorganic ligand exchange treatments[J]. Appl. Mater. Interfaces,2014,6(5):3721-3728.[31] Huang Q,Li F,Gong Y,et al. Recombination in SnO2-based quantum dots sensitized solar cells:The role of surface states[J]. J. Phys. Chem. C,2013, 117(21):10965-10973.[32] 吴春芳,魏杰. 量子点敏化太阳能电池研究进展中出现的问题及其解决方案[J]. 功能材料,2013,44(1):1-7.[33] Haque S A,Palomares E,Cho B M,et al. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells:The minimization of kinetic redundancy[J]. J. Am. Chem. Soc.,2005,127(10):3456-3462.[34] Haque S A,Tachibana Y,Willis R L,et al. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films[J]. J. Phys. Chem. B,1999,104(3):538-547.[35] Lee Y L,Chang C H. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells[J]. J. Power Source,2008,185(16):584-588.[36] 徐雪青,史继富,徐刚,等. 一种用于量子点敏化太阳电池的基于硫基离子液体的多硫电解质及其制备方法:中国,102097213A[P]. 2011-06-15.[37] 史继富,樊晔,徐雪青,等. 制备条件对Cu2S光阴极性能的影响[J]. 物理化学学报,2012,28(4):857-864.[38] Larramona G,Choné C,Jacob A,et al. Nanostructured photovoltaic cell of the type titanium dioxide,cadmium sulfide thin coating,and copper thiocyanate showing high quantum efficiency[J]. Chem. Mater.,2006,18(6):1688-1696.[39] Kopidakis N,Benkstein K D,van de Lagemaat J,et al. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells[J]. J. Phys. Chem. B,2003,107(41):11307-11315.[40] McPeak K M,Baxter J B. ZnO nanowires grown by chemical bath deposition in a continuous flow microreactor[J]. Cryst. Growth Des.,2009,9(10):4538-4545.[41] Shalom M,Dor S,Rühle S,et al. Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating[J]. J. Phys. Chem. C,2009,113(9):3895-3898.[42] Santra P K,Kamat P V. Mn-doped quantum dot-sensitized solar cells:A strategy to boost efficiency over 5%[J]. J. Am. Chem. Soc.,2012,134(5):2508-2511.[43] Yang H,Holloway P H,Santra S. Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots[J]. J. Chem. Phys.,2004, 121(15):7421-7426.[44] Zhang Y,Gan C,Muhammad J,et al. Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots[J]. J. Phys.Chem. C,2008,112(51):20200-20205.[45] Kongkanand A, Tvrdy K,Takechi K,et al. Quantum dot solar cells:Tuning photoresponse through size and shape control of CdSe-TiO2 architecture[J]. J. Am. Chem. Soc., 2008,130(12):4007-4015.[46] Lee Y,Chi C,Liau S. CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell[J]. Chem. Mater.,2009,22(3):922-927.[47] Kamat P V. Quantum dot solar cells:Semiconductor nanocrystals as light harvesters[J]. J. Phys. Chem. C,2008,112(48):18737-18753.[48] Williams E S,Major K J,Tobias A,et al. Characterizing the influence of TOPO on exciton recombination dynamics in colloidal CdSe quantum dots[J]. J. Phys. Chem. C,2013,117(8):4227-4237.[49] Kamat P V,Christians J A,Radich J G. Quantum dot solar cells:Hole transfer as a limiting factor in boosting the photoconversion efficiency[J]. Langmuir, 2014,30(20):5716-5725.[50] 杨祚宝. TiO2纳米管的结构修饰、改性及敏化太阳电池的研究[D]. 上海:上海大学,2013. |