[1] BOND D R,HOLMES D E,TENDER L M,et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science,2002,295(5554):483-485. [2] BOND D R,LOVLEY D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology,2003,69(3):1548-1555. [3] DEBABOV V G. Electricity from microorganisms[J]. Microbiology,2008,77(2):123-131. [4] WAGNER R C,CALL D F,LOGAN B E. Optimal set anode potentials vary in bioelectrochemical systems[J]. Environmental Science & Technology,2010,44(16):6036-6041. [5] MU Y,RABAEY K,ROZENDAL R A,et al. Decolorization of azo dyes in bioelectrochemical systems[J]. Environmental Science & Technology,2009,43(13):5137-5143. [6] LEE H,TORRES C I,PARAMESWARAN P,et al. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode[J]. Environmental Science & Technology,2009,43(20):7971-7976. [7] LOGAN B E,CALL D,CHENG S,et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology,2008,42(23):8630-8640. [8] LU L,XING D,REN N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge[J]. Water Research,2012,46(7):2425-2434. [9] CALL D F,MERRILL M D,LOGAN B E. High surface area stainless steel brushes as cathodes in microbial electrolysis cells[J]. Environmental Science & Technology,2009,43(6):2179-2183. [10] CHENG S,LOGAN B E. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing[J]. Bioresource Technology,2011,102(3):3571-3574. [11] KONG F,WANG A,CHENG H,et al. Accelerated decolorization of azo dye Congo Red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment[J]. Bioresource Technology,2014,151:332-339. [12] LOGAN B E. Scaling up microbial fuel cells and other bioelectrochemical systems[J]. Applied Microbiology and Biotechnology,2010,85(6):1665-1671. [13] JEREMIASSE A W,HAMELERS H V,KLEIJN J M,et al. Use of biocompatible buffers to reduce the concentration overpotential for hydrogen evolution[J]. Environmental Science & Technology,2009,43(17):6882-6887. [14] 马淳安. 有机电化学合成导论[M].北京: 科学出版社,2002. [15] WANG A,LIU W,CHENG S,et al. Source of methane and methods to control its formation in single chamber microbial electrolysis cells[J]. International Journal of Hydrogen Energy,2009,34(9):3653-3658. [16] CHENG S,LOGAN B E. Sustainable and efficient biohydrogen production via electrohydrogenesis[J]. Proceedings of the National Academy of Sciences,2007,104(47):18871-18873. [17] CALL D,LOGAN B E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane[J]. Environmental Science & Technology,2008,42(9):3401-3406. [18] HOU Y,LUO H,LIU G,et al. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation[J]. Environmental Science & Technology,2014,48(17):10482-10488. [19] FREGUIA S,RABAEY K,YUAN Z,et al. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells[J]. Electrochimica Acta,2007,53(2):598-603. [20] SELEMBO P A,MERRILL M D,LOGAN B E. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells[J]. Journal of Power Sources,2009,190(2):271-278. [21] ZHANG Y,MERRILL M D,LOGAN B E. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells[J]. International Journal of Hydrogen Energy,2010,35(21):12020-12028. [22] SELEMBO P A,MERRILL M D,LOGAN B E. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells[J]. International Journal of Hydrogen Energy,2010,35(2):428-437. [23] MARTINEZ S,METIKOŠ-HUKOVIĆ M,VALEK L. Electrocatalytic properties of electrodeposited Ni-15Mo cathodes for the HER in acid solutions:synergistic electronic effect[J]. Journal of Molecular Catalysis A (Chemical),2006,245(1):114-121. [24] HU H,FAN Y,LIU H. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts[J]. International Journal of Hydrogen Energy,2009,34(20):8535-8542. [25] 李金来,李伟,万新华,等. 添加 Sn 的 Ni-Al 合金生物电化学制氢阴极催化剂[J]. 化工学报,2010,61(10):2558-2564. [26] RABAEY K. Bioelectrochemical systems:from extracellular electron transfer to biotechnological application[M]. IWA Publishing,2010. [27] JEREMIASSE A W,HAMELERS H V,SAAKES M,et al. Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell[J]. International Journal of Hydrogen Energy,2010,35(23):12716-12723. [28] RAUSCH S,WENDT H. Morphology and utilization of smooth hydrogen-evolving raney nickel cathode coatings and porous sintered-nickel cathodes[J]. Journal of the Electrochemical Society,1996,143(9):2852-2862. [29] NIDOLA A,SCHIRA R. Poisoning mechanisms and structural analyses on metallic contaminated cathode catalysts in chlor-alkali membrane cell technology[J]. Journal of the Electrochemical Society,1986,133(8):1653-1656. [30] SOARES D M,TESCHKE O,TORRIANI I. Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media[J]. Journal of the Electrochemical Society,1992,139(1):98-105. [31] HUANG Y,LIU X,SUN X,Et al. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell[J]. International Journal of Hydrogen Energy,2011,36(4):2773-2776. [32] CHENG I F,FERNANDO Q,KORTE N. Electrochemical dechlorination of 4-chlorophenol to phenol[J]. Environmental Science & Technology,1997,31(4):1074-1078. [33] 吴婷婷,朱葛夫,邹然,等. 发酵制氢废液的微生物电解池产氢[J]. 化工进展,2013,32(6):1435-1438. [34] MITOV M,CHORBADZHIYSKA E,RASHKOV R,et al. Novel nanostructured electrocatalysts for hydrogen evolution reaction in neutral and weak acidic solutions[J]. International Journal of Hydrogen Energy,2012,37(21):16522-16526. [35] TIAN J,LIU Q,LIANG Y,et al. FeP nanoparticles film grown on carbon cloth:an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions[J]. ACS Applied Materials & Interfaces,2014,6(23):20579-20584. [36] WANG L,CHEN Y,HUANG Q,et al. Hydrogen production with carbon nanotubes based cathode catalysts in microbial electrolysis cells[J]. Journal of Chemical Technology and Biotechnology,2012,87(8):1150-1156. [37] REZAEE A,SAFARI M,HOSSINI H. Bioelectrochemical denitrification using carbon felt/multiwall carbon nanotube[J]. Environmental Technology,2015,36(8):1057-1062. [38] VASUDEVAN P,PHOUGAT N,SHUKLA A K. Metal phthalocyanines as electrocatalysts for redox reactions[J]. Applied Organometallic Chemistry,1996,10(8):591-604. [39] NYOKONG T,BEDIOUI F. Self-assembled monolayers and electropolymerized thin films of phthalocyanines as molecular materials for electroanalysis[J]. Journal of Porphyrins and Phthalocyanines,2006,10(09):1101-1115. [40] ISAACS M,ARMIJO F,RAMÍREZ G,et al. Electrochemical reduction of CO2 mediated by poly-M-aminophthalocyanines (M= Co,Ni,Fe):poly-Co-tetraaminophthalocyanine,a selective catalyst[J]. Journal of Molecular Catalysis A:Chemical,2005,229(1):249-257. [41] ZHAO H,ZHANG Y,ZHAO B,et al. Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode[J]. Environmental Science & Technology,2012,46(9):5198-5204. [42] YANG Q,JIANG Y,XU Y,et al. Hydrogen production with polyaniline/multi-walled carbon nanotube cathode catalysts in microbial electrolysis cells[J]. Journal of Chemical Technology and Biotechnology,2015,90(7):1263-1269. [43] ZHANG S,KANG P,UBNOSKE S,et al. Polyethylenimine- enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials[J]. Journal of the American Chemical Society,2014,136(22):7845-7848. [44] LEWIS K. Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells.[J]. Bacteriological reviews,1966,30(1):101. [45] ZHANG Y,SUN J,HU Y,et al. Bio-cathode materials evaluation in microbial fuel cells:a comparison of graphite felt,carbon paper and stainless steel mesh materials[J]. International Journal of Hydrogen Energy,2012,37(22):16935-16942. [46] AULENTA F,CATERVI A,MAJONE M,et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE[J]. Environmental Science & Technology,2007,41(7):2554-2559. [47] VILLANO M,DE BONIS L,ROSSETTI S,et al. Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents[J]. Bioresource Technology,2011,102(3):3193-3199. [48] ZHAO H,LI J,LI J,et al. Organic loading rate shock impact on operation and microbial communities in different anaerobic fixed-bed reactors[J]. Bioresource Technology,2013,140:211-219. [49] CHEN S,ROTARU A,LIU F,et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures[J]. Bioresource Technology,2014,173:82-86. [50] ROZENDAL R A,JEREMIASSE A W,HAMELERS H V,et al. Hydrogen production with a microbial biocathode[J]. Environmental Science & Technology,2007,42(2):629-634. [51] HUANG L,JIANG L,WANG Q,et al. Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells[J]. Chemical Engineering Journal,2014,253:281-290. [52] BATLLE-VILANOVA P,PUIG S,GONZALEZ-OLMOS R,et al. Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells[J]. International Journal of Hydrogen Energy,2014,39(3):1297-1305. [53] LUO H,FU S,LIU G,et al. Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells[J]. Bioresource Technology,2014,167:462-468. [54] PISCIOTTA J M,ZAYBAK Z,CALL D F,et al. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes[J]. Applied and Environmental Microbiology,2012,78(15):5212-5219. [55] DUMAS C,BASSEGUY R,BERGEL A. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes[J]. Electrochimica Acta,2008,53(5):2494-2500. [56] MALVANKAR N S,LOVLEY D R. Microbial nanowires for bioenergy applications[J]. Current Opinion in Biotechnology,2014,27:88-95. [57] RABAEY K,BOON N,SICILIANO S D,et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology,2004,70(9):5373-5382. [58] LIANG B,CHENG H,KONG D,et al. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode[J]. Environmental Science & Technology,2013,47(10):5353-5361. [59] AULENTA F,REALE P,CANOSA A,et al. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene[J]. Biosensors and Bioelectronics,2010,25(7):1796-1802. [60] WANG Y,WANG A,LIU W,et al. Accelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems[J]. Bioresource Technology,2013,146:740-743. [61] 符诗雨,刘广立,骆海萍,等. 微生物电解系统生物阴极的硫酸盐还原特性研究[J]. 环境科学,2014,35(2):626-632. [62] THRASH J C,VAN TRUMP J I,WEBER K A,et al. Electrochemical stimulation of microbial perchlorate reduction[J]. Environmental Science & Technology,2007,41(5):1740-1746. [63] ZHU L,GAO K,QI J,et al. Enhanced reductive transformation of p-chloronitrobenzene in a novel bioelectrode-UASB coupled system[J]. Bioresource Technology,2014,167:303-309. [64] SCHWARTZ E,FRIEDRICH B. The H2-metabolizing prokaryotes[M]//The Prokaryotes Volume 2:Ecophysiology and Biochemistry. Springer,2006:496-563. [65] CROESE E,PEREIRA M A,EUVERINK G W,et al. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell[J]. Applied Microbiology and Biotechnology,2011,92(5):1083-1093. [66] CHENG S,XING D,CALL D F,et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology,2009,43(10):3953-3958. [67] ZHANG J,ZHANG Y,QUAN X,et al. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe (Ⅲ) reducing conditions[J]. Bioresource Technology,2013,136:273-280. [68] DE VRIEZE J,GILDEMYN S,ARENDS J B,et al. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion[J]. Water Research,2014,54:211-221. [69] CROESE E,JEREMIASSE A W,MARSHALL I P,et al. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells[J]. Enzyme and Microbial Technology,2014,61:67-75. [70] AULENTA F,TOCCA L,VERDINI R,et al. Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor:effect of cathode potential on rate,selectivity,and electron transfer mechanisms[J]. Environmental Science & Technology,2011,45(19):8444-8451. [71] JEREMIASSE A W,HAMELERS H V,CROESE E,et al. Acetate enhances startup of a H2-producing microbial biocathode[J]. Biotechnology and Bioengineering,2012,109(3):657-664. [72] VILLANO M,AULENTA F,CIUCCI C,et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresource Technology,2010,101(9):3085-3090. [73] LEE H,RITTMANN B E. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell[J]. Environmental Science & Technology,2009,44(3):948-954. |