[1] ORR F M. CO2 capture and storage:are we ready?[J]. Energy Environ. Sci,2009,2(5):449-458.[2] SANZ R,CALLEJA G,ARENCIBIA A,et al. Development of high efficiency adsorbents for CO2 capture based on a double-functionalization method of grafting and impregnation[J]. J. Mater. Chem. A,2013,1(6):1956-1962.[3] BAI R Z,YANG M L,HU G S,et al. A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke[J]. Carbon, 2015,81:465-473.[4] SAYARI A,BELMABKHOUTA Y,SEMA-GUERREROB R. Flue gas treatment via CO2 adsorption[J]. Chem. Eng. J.,2011,171(3):760-774.[5] HEDIN N,CHEN L J,LAAKSONEN A. Sorbents for CO2 capture from flue gas-aspects from materials and theoretical chemistry[J]. Nanoscale,2010,2(10):1819-1841.[6] LIU J,THALLAPALLY P K,MCGRAILl B P,et al. Progress in adsorption-based CO2 capture by metal-organic frameworks[J]. Chem. Soc. Rev.,2012,41(6):2308-2322.[7] LI J M,YANG J F,LI L B,et al. Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2[J]. J. Energy Chem.,2014, 23(4):453-460.[8] CHEN B,WANG X J,ZHANG Q F,et al. Synthesis and characterization of the interpenetrated MOF-5[J]. J. Mater. Chem., 2010,20(18):3758-3767.[9] MCEWEN J,HAYMAN J D,YAZAYDIN A O. A comparative study of CO2,CH4 and N2 adsorption in ZIF-8,Zeolite-13X and BPL activated carbon[J]. Chem. Phys.,2012,412:72-76.[10] CHMELIKA C,BATEN J V,KRISHNA R. Hindering effects in diffusion of CO2/CH4 mixtures in ZIF-8 crystals[J]. J. Membr. Sci., 2012,397:87-91.[11] COUCK S, DENAYER J F, BARON G V, et al. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4[J]. J. Am. Chem. Soc.,2009,131(18):6326-6327.[12] YAN Q J,LIN Y C,KONG C L,et al. Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents[J]. Chem. Commun.,2013,49(61):6873-6875.[13] ABID H R,TIAN H Y,ANG H M,et al. Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage[J]. Chem. Eng. J.,2012,187:415-420.[14] CHAEMCHUEN S,KABIR N A,ZHOU K,et al. Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy[J]. Chem. Soc. Rev.,2013,42(24):9304-9332.[15] CHUI S,LO S,CHARMANT J,et al. A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3]n[J]. Science,1999,283(5405):1148-1150.[16] YE S,JIANG X,RUAN L W,et al. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal-organic frameworks:adsorption, separation and regeneration investigations[J]. Microporous Mesoporous Mater.,2013,179:191-197.[17] YAN X L,KOMARNENI S,ZHANG Z Q,et al. Extremely enhanced CO2 uptake by HKUST-1 metal-organic framework via a simple chemical treatment[J]. Microporous Mesoporous Mater., 2014,183:69-73.[18] ZHU Q L,XU Q. Metal-organic framework composites[J]. Chem. Soc. Rev.,2014,43(16):5468-5512.[19] RALLAPALLI P B,RAJ M C,PATIL D V,et al. Activated carbon@MIL-101(Cr):a potential metal-organic framework composite material for hydrogen storage[J]. Int. J. Energy Res.,2013,37(7):746-753.[20] XIANG Z H,PENG X,CHENG X,et al. CNT@Cu3(BTC)2 and metal-organic frameworks for separation of CO2/CH4 mixture[J]. J. Phys. Chem. C,2011,115(40):19864-19871.[21] YANG S J,CHOI J Y,CHAE H K,et al. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite[J].Chem. Mater. 2009,21(9):1893-1897.[22] ZHAO Y X,SEREDYCH M,ZHONG Q,et al. Aminated graphite oxides and their composites with copper-based metal-organic framework:in search for efficient media for CO2 sequestration[J]. RSC Adv.,2013,3(25):9932-9941.[23] ZHAO Y X, SEREDYCH M, ZHONG Q, et al. Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature[J]. ACS Appl. Mater. Interfaces,2013,5(11):4951-4959.[24] PETIT C,BANDOSZ T J. Engineering the surface of a new class of adsorbents:metal-organic framework/graphite oxide composites[J]. J. Colloid Interface Sci.,2015,447:139-151.[25] ZHAO Y X,SEREDYCH M,JAGIELLO J,et al. Insight into the mechanism of CO2 adsorption on Cu-BTC and its composites with graphite oxide or aminated graphite oxide[J]. Chem. Eng. J.,2014, 239:399-407.[26] ZLOTEA C,CAMPESI R,CUEVAS F,et al. Pd Nanoparticles embedded into a metal-organic framework:synthesis,structural characteristics,and hydrogen sorption properties[J]. J. Am. Chem. Soc.,2010,132(9):2991-2997.[27] AIJAZ A,KARKAMKAR A,CHOI Y J,et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework:A double solvents approach[J]. J. Am. Chem. Soc., 2012,134(34:):13926-13929.[28] ZHANG T,ZHANG X F,YAN X J,et al. Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor[J]. Chem. Eng. J.,2013,228:398-404.[29] ZHAN W W, KUANG Q, ZHOU J Z, et al. Semiconductor@metal-organic framework core-shell heterostructures:a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response[J]. J. Am. Chem. Soc.,2013,135(5):1926-1933.[30] CAVKA J H,JAKOBSEN S,OLSBYE U,et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J. Am. Chem. Soc.,2008,130(42):13850-13851.[31] KUMAR R S,KUMAR S S,KULANDAINATHAN M A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction[J]. Microporous Mesoporous Mater.,2013,168:57-64.[32] LUO Q X,SONG X D,JIA M,et al. Molecular size-and shape-selective Knoevenagel condensation overmicroporous Cu3(BTC)2 immobilized amino-functionalized basic ionicliquid catalyst[J]. Appl. Catal. A-Gen.,2014,478:81-90.[33] CHIERICATTI C,BASILICO J C,BASILICO M L,et al. Novel application of HKUST-1 metal-organic framework as antifungal:biological tests and physicochemical characterizations[J]. Microporous Mesoporous Mater.,2012,162:60-63. |