化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5211-5223.DOI: 10.16085/j.issn.1000-6613.2024-1412
• 材料科学与技术 • 上一篇
收稿日期:2024-08-29
修回日期:2025-01-22
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
张钰
作者简介:袁博(1988—),男,博士,副教授,研究方向为渗透汽化膜的制备及应用。E-mail:yuanbo613@jlict.edu.cn。
基金资助:
YUAN Bo(
), GOU Jiaxuan, LI Yuzhuang, LIU Qun, XU Kun, ZHANG Yu(
)
Received:2024-08-29
Revised:2025-01-22
Online:2025-09-25
Published:2025-09-30
Contact:
ZHANG Yu
摘要:
在聚合物基体中加入疏水性纳米多孔填料制备混合基质膜(MMM),是提高低浓度乙醇水溶液渗透汽化分离性能十分有效的策略。本文为适应工业化应用要求,在管式陶瓷载体上制备了ZIF-67颗粒填充的聚二甲基硅氧烷(PDMS)基MMM,但存在ZIF-67颗粒在基质膜中出现一定程度的团聚导致分散性不好、ZIF-67与基质膜之间的界面相溶性不理想等不足。进而进一步制备了ZIF-67衍生纳米多孔碳(C-ZIF-67),以取代传统MMM中的ZIF-67。通过各种表征研究了ZIF-67及其碳化颗粒的化学结构,并对所得MMMs的形态和性质进行了测试。由于碳成分固有的强疏水性质、相对较好的分散性以及与PDMS更好的相溶性,C-ZIF-67/PDMS MMM表现出比ZIF-67/PDMS MMM和纯PDMS膜更优异的分离性能。在60℃下质量分数5%的乙醇水溶液中,C-ZIF-67/PDMS-15% MMM的性能最佳,通量为1.04kg/(m2·h),相应的分离因子为9.2。综合来看,相关实验结果已初步表明C-ZIF-67/PDMS MMM在低浓度乙醇水溶液分离中具有潜在的应用价值。
中图分类号:
袁博, 勾佳宣, 李玉壮, 刘群, 徐坤, 张钰. 基于管式陶瓷载体的碳化ZIF-67掺入PDMS混合基质膜及其渗透汽化回收乙醇应用[J]. 化工进展, 2025, 44(9): 5211-5223.
YUAN Bo, GOU Jiaxuan, LI Yuzhuang, LIU Qun, XU Kun, ZHANG Yu. Carbonized ZIF-67 incorporated PDMS mixed matrix membranes on ceramic tubes for recovery of ethanol via pervaporation[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5211-5223.
| 样品 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|
| ZIF-67 | 0.74 | 0.71 | 2.18 |
| C-ZIF-67 | 0.32 | 0.17 | 3.57 |
表1 ZIF-67和C-ZIF-67的孔结构特性
| 样品 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|
| ZIF-67 | 0.74 | 0.71 | 2.18 |
| C-ZIF-67 | 0.32 | 0.17 | 3.57 |
| 膜 | 水接触角/(°) |
|---|---|
| PDMS | 115 |
| ZIF-67/PDMS-5% | 118 |
| ZIF-67/PDMS-10% | 122 |
| ZIF-67/PDMS-15% | 129 |
| ZIF-67/PDMS-20% | 130 |
| ZIF-67/PDMS-25% | 132 |
表2 ZIF-67/PDMS MMM的水接触角
| 膜 | 水接触角/(°) |
|---|---|
| PDMS | 115 |
| ZIF-67/PDMS-5% | 118 |
| ZIF-67/PDMS-10% | 122 |
| ZIF-67/PDMS-15% | 129 |
| ZIF-67/PDMS-20% | 130 |
| ZIF-67/PDMS-25% | 132 |
| 膜 | 操作温度/℃ | 料液质量分数/% | 渗透通量/kg·m-2·h-1 | 分离因子 | 参考文献 |
|---|---|---|---|---|---|
| ZIF-8/PDMS | 40 | 5 | 1.60 | 8.5 | [ |
| ZIF-L/PDMS | 40 | 5 | 1.12 | 12.3 | [ |
| MCM-41@ZIF-8 | 50 | 5 | 1.20 | 8.1 | [ |
| UiO-66/α-Al2O3 | 50 | 10 | 1.40 | 4.9 | [ |
| Silicalite-1/PDMS | 60 | 5 | 0.40 | 14.7 | [ |
| Silicalite-1/PDMS | 35 | 6 | 0.05 | 9.2 | [ |
| POSS-GO/PDMS | 40 | 5 | 1.35 | 11.2 | [ |
| PDMS | 60 | 5 | 1.62 | 本工作 | |
| Silicalite-1/PDMS | 60 | 5 | 0.43 | 本工作 | |
| ZIF-67/PDMS | 60 | 5 | 0.85 | 本工作 | |
| C-ZIF-67/PDMS | 60 | 5 | 1.04 | 本工作 |
表3 不同PDMS混合基质膜在乙醇水溶液中渗透汽化性能的比较
| 膜 | 操作温度/℃ | 料液质量分数/% | 渗透通量/kg·m-2·h-1 | 分离因子 | 参考文献 |
|---|---|---|---|---|---|
| ZIF-8/PDMS | 40 | 5 | 1.60 | 8.5 | [ |
| ZIF-L/PDMS | 40 | 5 | 1.12 | 12.3 | [ |
| MCM-41@ZIF-8 | 50 | 5 | 1.20 | 8.1 | [ |
| UiO-66/α-Al2O3 | 50 | 10 | 1.40 | 4.9 | [ |
| Silicalite-1/PDMS | 60 | 5 | 0.40 | 14.7 | [ |
| Silicalite-1/PDMS | 35 | 6 | 0.05 | 9.2 | [ |
| POSS-GO/PDMS | 40 | 5 | 1.35 | 11.2 | [ |
| PDMS | 60 | 5 | 1.62 | 本工作 | |
| Silicalite-1/PDMS | 60 | 5 | 0.43 | 本工作 | |
| ZIF-67/PDMS | 60 | 5 | 0.85 | 本工作 | |
| C-ZIF-67/PDMS | 60 | 5 | 1.04 | 本工作 |
| [1] | SINGH Sanjeet, RU Jayaram. Accessibility, affordability, and efficiency of clean energy: A review and research agenda[J]. Environmental Science and Pollution Research International, 2022, 29(13): 18333-18347. |
| [2] | ZHENG Peiyao, LI Chong, WANG Naixin, et al. The potential of pervaporation for biofuel recovery from fermentation: An energy consumption point of view[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1296-1306. |
| [3] | ALIZADEH Reza, LUND Peter D, SOLTANISEHAT Leili. Outlook on biofuels in future studies: A systematic literature review[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110326. |
| [4] | SINGH Ashish, RANGAIAH Gade Pandu. Review of technological advances in bioethanol recovery and dehydration[J]. Industrial & Engineering Chemistry Research, 2017, 56(18): 5147-5163. |
| [5] | JEFFRIES Thomas W, SCHARTMAN Richard. Bioconversion of secondary fiber fines to ethanol using counter-current enzymatic saccharification and co-fermentation[J]. Applied Biochemistry and Biotechnology, 1999, 77/78/79: 435-444. |
| [6] | 彭莉, 吴政奇, 王兴, 等. CVD法制备Sn掺杂MFI分子筛膜及其对乙醇/水体系的分离性能[J]. 高等学校化学学报, 2020, 41(12): 2710-2716. |
| PENG Li, WU Zhengqi, WANG Xing, et al. Preparation of Sn-doped MFI molecular sieve membrane by CVD method and its separation performance for ethanol/water system[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2710-2716. | |
| [7] | RAHIMALIMAMAGHANI A, PACHECO TANAKA D A, LLOSA TANCO M A, et al. New hydrophilic carbon molecular sieve membranes for bioethanol dehydration via pervaporation[J]. Chemical Engineering Journal, 2022, 435: 134891. |
| [8] | KAMELIAN Fariba Sadat, NAEIMPOOR Fereshteh, MOHAMMADI Toraj. Using a novel pervaporative sequential-co-immobilized two-sectional bioreactor with an ultralow fouling-biofouling superhydrophobic silicallite-1/PDMS membrane to enhance bioethanol production[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(7): 3133-3146. |
| [9] | LI Yusi, THOMAS Elisabeth R, MOLINA Mariana Hernandez, et al. Desalination by membrane pervaporation: A review[J]. Desalination, 2023, 547: 116223. |
| [10] | 张磊, 张新儒, 王永洪, 等. 二维纳米材料混合基质膜在渗透汽化有机物分离的研究进展[J].化工进展, 2025, 44(6): 3324-3335. |
| ZHANG Lei, ZHANG Xinru, WANG Yonghong, et al. Research progress of two-dimensional nanomaterial-based mixed matrix membranes in organic pervaporation separation[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3324-3335. | |
| [11] | Yee Kang ONG, SHI GUI min, LE Ngoc Lieu, et al. Recent membrane development for pervaporation processes[J]. Progress in Polymer Science, 2016, 57: 1-31. |
| [12] | Pattabhi RAMAIAH K, MISHRA Karishma, ATKAR Aarti, et al. Pervaporation separation of chlorinated environmental pollutants from aqueous solutions by castor oil based composite interpenetrating network membranes[J]. Chemical Engineering Journal, 2020, 387: 124050. |
| [13] | PAN Yong, XIE Rui, XU Baoming, et al. Determination of sorption and diffusion for ethanol through superhydrophobic ZIF/PDMS mixed matrix membrane[J]. Microporous and Mesoporous Materials, 2021, 320: 111086. |
| [14] | ROZICKA Anna, Johanna NIEMISTÖ, KEISKI Riitta L, et al. Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures[J]. Journal of Membrane Science, 2014, 453: 108-118. |
| [15] | SHIN HyeonTae, CHAUDHARI Shivshankar, KIM UiSeo, et al. Facile preparation of hydrophobic Halloysite nanotubes (HNTs) for enhancement of organic solvent nanofiltration performance of polydimethylsiloxane (PDMS)-HNTs mixed matrix membrane[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660: 130789. |
| [16] | TIAN Yuhong, HU Changfeng, AN Mingzhe, et al. Fabrication and characterization of carbon nanotube filled PDMS hybrid membranes for enhanced ethanol recovery[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12294-12304. |
| [17] | SI Zhihao, CAI Di, LI Shufeng, et al. A high-efficiency diffusion process in carbonized ZIF-8 incorporated mixed matrix membrane for n-butanol recovery[J]. Separation and Purification Technology, 2019, 221: 286-293. |
| [18] | 韩小龙, 张杏梅, 马晓迅, 等. 碳纳米管填充PDMS膜的渗透汽化性能[J]. 化工学报, 2014, 65(1): 271-278. |
| HAN Xiaolong, ZHANG Xingmei, MA Xiaoxun, et al. Pervaporation performance of carbon nanotube filled PDMS membranes[J]. CIESC Journal, 2014, 65(1): 271-278. | |
| [19] | REN Cong, SI Zhihao, QU Yixin, et al. CF3-MOF enhanced pervaporation selectivity of PDMS membranes for butanol separation[J]. Separation and Purification Technology, 2022, 284: 120255. |
| [20] | SI Zhihao, CAI Di, LI Shufeng, et al. Carbonized ZIF-8 incorporated mixed matrix membrane for stable ABE recovery from fermentation broth[J]. Journal of Membrane Science, 2019, 579: 309-317. |
| [21] | CHEN Xiaole, LI Na, CHEN Linyu, et al. Synthesis and characterization of high-flux ZIF-90/poly-dimethyldiethoxysilane (PDMDES) mixed matrix membrane for enhanced pervaporation recovery of alcohols[J]. Separation and Purification Technology, 2024, 336: 126233. |
| [22] | ZHU Tengyang, YU Xi, YI Ming, et al. Facile covalent crosslinking of zeolitic imidazolate framework/polydimethylsiloxane mixed matrix membrane for enhanced ethanol/water separation performance[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12664-12676. |
| [23] | ZHANG Guojun, LI Jie, WANG Naixin, et al. Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles[J]. Journal of Membrane Science, 2015, 492: 322-330. |
| [24] | SALIBA Daniel, AMMAR Manal, RAMMAL Moustafa, et al. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives[J]. Journal of the American Chemical Society, 2018, 140(5): 1812-1823. |
| [25] | KHAN Amin, Mohsin ALI, ILYAS Ayesha, et al. ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation[J]. Separation and Purification Technology, 2018, 206: 50-58. |
| [26] | PAN Yong, LI Hai, ZHANG Xiaoxin, et al. Large-scale synthesis of ZIF-67 and highly efficient carbon capture using a ZIF-67/glycol-2-methylimidazole slurry[J]. Chemical Engineering Science, 2015, 137: 504-514. |
| [27] | FENG Xuhui, CARREON Moises A. Kinetics of transformation on ZIF-67 crystals[J]. Journal of Crystal Growth, 2015, 418: 158-162. |
| [28] | ZHU Haipeng, PAN Yang, SUN Xuefei, et al. Recycle of ceramic substrate of PDMS/ceramic composite membranes towards alcohol-permselective pervaporation[J]. Journal of Membrane Science, 2021, 640: 119835. |
| [29] | 熊柏闻, 吴红丹, 周志辉. 渗透汽化有机-无机杂化膜研究进展[J]. 精细化工, 2021, 38(3): 433-438, 453. |
| XIONG Bowen, WU Hongdan, ZHOU Zhihui. Research progress of organic-inorganic hybrid membranes for pervaporation[J]. Fine Chemicals, 2021, 38(3): 433-438, 453. | |
| [30] | BIBI Shabahat, PERVAIZ Erum, Maryum ALI. Synthesis and applications of metal oxide derivatives of ZIF-67: A mini-review[J]. Chemical Papers, 2021, 75(6): 2253-2275. |
| [31] | SUO Yange, ZHANG Zihan, ZHANG Zhiguo, et al. Cobalt and nitrogen-doped carbon with enlarged pore size derived from ZIF-67 by a NaCl-assisted pyrolysis strategy towards oxygen reduction reaction[J]. Ionics, 2021, 27(1): 289-303. |
| [32] | LIU Gongping, WEI Wang, JIN Wanqin, et al. Polymer/ceramic composite membranes and their application in pervaporation process[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 62-70. |
| [33] | WEI Wang, XIA Shanshan, LIU Gongping, et al. Effects of polydimethylsiloxane (PDMS) molecular weight on performance of PDMS/ceramic composite membranes[J]. Journal of Membrane Science, 2011, 375(1/2): 334-344. |
| [34] | LIU Gongping, XIANGLI Fenjuan, WEI Wang, et al. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach[J]. Chemical Engineering Journal, 2011, 174(2/3): 495-503. |
| [35] | LU Xiaofei, WANG Hongsheng, YANG Yanwei, et al. Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives[J]. Journal of Membrane Science, 2022, 662: 120931. |
| [36] | TRUONG Thanh, HOANG Tam M, NGUYEN Chung K, et al. Expanding applications of zeolite imidazolate frameworks in catalysis: Synthesis of quinazolines using ZIF-67 as an efficient heterogeneous catalyst[J]. RSC Advances, 2015, 5(31): 24769-24776. |
| [37] | BELIN T, EPRON F. Characterization methods of carbon nanotubes: A review[J]. Materials Science and Engineering: B, 2005, 119(2): 105-118. |
| [38] | PANG Siyu, SI Zhihao, LI Guozhen, et al. A fluorinated, defect-free ZIF-8/PDMS mixed matrix membrane for enhancing ethanol pervaporation[J]. Journal of Membrane Science, 2022, 661: 120920. |
| [39] | ZHOU Haoli, ZHANG Jinqiang, WAN Yinhua, et al. Fabrication of high silicalite-1 content filled PDMS thin composite pervaporation membrane for the separation of ethanol from aqueous solutions[J]. Journal of Membrane Science, 2017, 524: 1-11. |
| [40] | XU Sheng, ZHANG Hao, YU Fen, et al. Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90[J]. Separation and Purification Technology, 2018, 206: 80-89. |
| [41] | FENG Xianshe, HUANG Robert Y M. Estimation of activation energy for permeation in pervaporation processes[J]. Journal of Membrane Science, 1996, 118(1): 127-131. |
| [42] | LIU Xiangyan, HU Deng, LI Meng, et al. Preparation and characterization of Silicalite-1/PDMS surface sieving pervaporation membrane for separation of ethanol/water mixture[J]. Journal of Applied Polymer Science, 2015, 132(34): 42460. |
| [43] | MAO Heng, ZHEN Honggang, AHMAD Ali, et al. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation[J]. Journal of Membrane Science, 2019, 573: 344-358. |
| [44] | PEI Chan, MAO Heng, WANG Yujie, et al. Boosting pervaporation performance of ZIF-L/PDMS mixed matrix membranes by surface plasma etching for ethanol/water separation[J]. Separation and Purification Technology, 2023, 318: 124025. |
| [45] | WANG Naixin, SHI Guixiong, GAO Jing, et al. MCM-41@ZIF-8/PDMS hybrid membranes with micro- and nanoscaled hierarchical structure for alcohol permselective pervaporation[J]. Separation and Purification Technology, 2015, 153: 146-155. |
| [46] | MIYAMOTO Manabu, HORI Keisuke, GOSHIMA Tatsumasa, et al. An organoselective zirconium-based metal-organic-framework UiO-66 membrane for pervaporation[J]. European Journal of Inorganic Chemistry, 2017, 2017(14): 2094-2099. |
| [47] | WANG Naixin, LIU Jida, LI Jie, et al. Tuning properties of silicalite-1 for enhanced ethanol/water pervaporation separation in its PDMS hybrid membrane[J]. Microporous and Mesoporous Materials, 2015, 201: 35-42. |
| [48] | MOERMANS Ben, DE BEUCKELAER Wouter, VANKELECOM Ivo F J, et al. Incorporation of nano-sized zeolites in membranes[J]. Chemical Communications, 2000, 24: 2467-2468. |
| [49] | CAO Tengxuan, LI Jie, LI Chong, et al. POSS-graphene oxide nanocomposite membranes for ethanol permselective pervaporation[J]. Microporous and Mesoporous Materials, 2022, 331: 111635. |
| [1] | 周敬皓, 张朝阳, 胡昊星, 王思茗, 刘静远, 魏光华. 基于格子玻尔兹曼方法的PEMFC微孔层气体传质分析[J]. 化工进展, 2025, 44(9): 4898-4907. |
| [2] | 张博, 马骏, 张维隆, 贾世川, 张智飞, 丁宇, 潘有华, 王俊宇, 张兰河. α-ZrP/PDMS超疏水防腐涂层的制备及其耐腐蚀性能[J]. 化工进展, 2025, 44(9): 5130-5139. |
| [3] | 左启斌, 张涵, 孙传付, 胡桂林, 夏玉珍. 镍/石墨烯涂层在质子交换膜燃料电池泡沫金属流场上的应用[J]. 化工进展, 2025, 44(9): 5195-5201. |
| [4] | 王晋, 贺晓蕊, 江壮壮, 冯勇, 刘城, 沈星汉. 车用燃料电池质子交换膜气体渗透率的理论计算和实验[J]. 化工进展, 2025, 44(9): 5202-5210. |
| [5] | 王帅, 钱相臣, 章雷其, 吴启亮, 刘敏. 质子交换膜燃料电池和电解槽关键组件衰减机理[J]. 化工进展, 2025, 44(7): 3804-3815. |
| [6] | 曹曼曼, 郭英明, 曹袁圆, 张宇宏, 张哲凯. 高铁酸钾强化铁锰氧化膜过滤去除水中双酚A及机理[J]. 化工进展, 2025, 44(7): 4274-4281. |
| [7] | 张健, 林日辉, 银江林, 李彦姿, 付雨璐, 刘晓霞. 甘蔗尾叶的干法预处理及其乙酰化产物的制备与表征[J]. 化工进展, 2025, 44(7): 3997-4005. |
| [8] | 邹志鹏, 潘全旺, 赵陈, 沈海涛, 丛梅, 赵基钢. 流体在光滑圆条上的降膜流动分析[J]. 化工进展, 2025, 44(6): 3405-3412. |
| [9] | 淳良, 廖子成, 王国强, 肖遥, 霍金鹏, 刘东. PV/T驱动转轮除湿耦合真空膜除湿冷却系统的性能评价[J]. 化工进展, 2025, 44(6): 3457-3467. |
| [10] | 张敏, 赵娅敏, 张沛春, 张斌, 齐燕姣, 张宏, 陈丽华. 基于蓝莓花青素的CS/SA智能指示复合凝胶膜的制备及性能[J]. 化工进展, 2025, 44(6): 3550-3560. |
| [11] | 付沅峰, 范振忠, 臧鑫, 仝其雷, 刘金刚. 超亲水水下超疏油复合不锈钢网的制备及在油水分离中的应用[J]. 化工进展, 2025, 44(6): 3659-3670. |
| [12] | 孙燕, 陈马超, 田娜, 谢晓阳, 李晓玲, 何皎洁, 赵晓红. 基于β-环糊精的TFC正渗透膜原位构筑及抗污染性能[J]. 化工进展, 2025, 44(6): 3671-3682. |
| [13] | 付江, 孙姣霞, 付俊杰, 朱敏, 宋品学, 周怡宁, 樊建新. 疏水改性聚酯纤维织物的自清洁作用及油水分离性能[J]. 化工进展, 2025, 44(6): 3121-3131. |
| [14] | 余子昱, 陈晓飞, 侯春光, 岳殿鹤, 彭跃莲, 安全福. 渗透汽化和真空膜蒸馏在氨基甲酸酯脱水中的比较[J]. 化工进展, 2025, 44(6): 3247-3257. |
| [15] | 张磊, 张新儒, 王永洪, 李晋平, 刘春波. 二维纳米材料混合基质膜在渗透汽化有机物分离的研究进展[J]. 化工进展, 2025, 44(6): 3324-3335. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |