化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5006-5017.DOI: 10.16085/j.issn.1000-6613.2024-1127
• 材料科学与技术 • 上一篇
收稿日期:2024-07-15
修回日期:2024-08-26
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
刘定华
作者简介:符红梅(2001—),女,硕士研究生,研究方向为芳烃同分异构体吸附分离。E-mail: 1762035917@qq.com。
FU Hongmei(
), LIU Dinghua(
), LIU Xiaoqin
Received:2024-07-15
Revised:2024-08-26
Online:2025-09-25
Published:2025-09-30
Contact:
LIU Dinghua
摘要:
芳烃同分异构体因其具有相似的分子结构和物化性质,在工业分离中面临着较大挑战。金属有机框架(MOF)材料具有高比表面积、高度可调性及结构可控性等特性,在芳烃同分异构体吸附分离领域中展现出巨大的应用潜力。本文介绍了芳烃吸附分离应用中研究较多的几个典型MOF结构,探讨了芳烃同分异构体分离机制。从C8芳烃同分异构体及其他关键芳烃异构体的角度出发,介绍了不同系列和不同分离机制的MOF材料,系统回顾了MOF材料的吸附特性、吸附机制及其在分离过程中的应用。针对MOF材料在芳烃异构体吸附分离领域的应用问题,比较了MOF膜分离芳烃异构体的效率,剖析了分子模拟优化材料吸附性能的案例。最后,总结了MOF材料在吸附分离芳烃同分异构体应用中存在的问题,并对MOF材料的创新与吸附性能的提升所面临的挑战进行了展望。
中图分类号:
符红梅, 刘定华, 刘晓勤. MOF材料在芳烃同分异构体分离中的研究进展[J]. 化工进展, 2025, 44(9): 5006-5017.
FU Hongmei, LIU Dinghua, LIU Xiaoqin. Research progress on the separation of aromatic isomers using MOF materials[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5006-5017.
| 二甲苯异构体 | 沸点/℃ | 熔点/℃ | 动力学直径/nm | 偶极矩/×1018esu·cm | 极性/×1025cm-3 |
|---|---|---|---|---|---|
| 邻二甲苯 | 144.44 | -25.2 | 0.68 | 0.64 | 141~149 |
| 间二甲苯 | 139.19 | -47.9 | 0.68 | 0.37 | 142 |
| 对二甲苯 | 138.38 | 13.2 | 0.58 | 0.10 | 137~149 |
| 乙苯 | 136.19 | -95.0 | 0.58 | 0.59 | 142 |
表1 二甲苯异构体的物理性质和尺寸
| 二甲苯异构体 | 沸点/℃ | 熔点/℃ | 动力学直径/nm | 偶极矩/×1018esu·cm | 极性/×1025cm-3 |
|---|---|---|---|---|---|
| 邻二甲苯 | 144.44 | -25.2 | 0.68 | 0.64 | 141~149 |
| 间二甲苯 | 139.19 | -47.9 | 0.68 | 0.37 | 142 |
| 对二甲苯 | 138.38 | 13.2 | 0.58 | 0.10 | 137~149 |
| 乙苯 | 136.19 | -95.0 | 0.58 | 0.59 | 142 |
| 材料 | 比表面积/m2·g-1 | 孔径/Å | 选择性 | 温度/K | PX吸附量/mmol·g-1 | 文献 | ||
|---|---|---|---|---|---|---|---|---|
| PX/MX | PX/OX | PX/EB | ||||||
| NH2-MIL-125(Ti) | 1305 | 5~7 | 3.0 | 2.2 | 1.6 | 298 | 1.20 | [ |
| Co(aip)(bpy)0.5 | — | — | 30.0 | 16.0 | — | 298 | 1.47 | [ |
| Mn(dhbq)(H2O)2 | 470 | 5.6 | 66.8 | 25.5 | — | 393 | 1.33 | [ |
| MIL-101(Cr) | 3990 | 6 | — | — | — | 313 | 12.31 | [ |
| DUT-8(Cu) | 2685 | 9.3 | 5.4 | 7.2 | 5.9 | 298 | 1.80 | [ |
| Zn-ETTOB | 2594.9 | 7 | 3.9 | 6.2 | 1.2 | 298 | 8.00 | [ |
| MIL-47(V) | 750 | — | 1/1.2 | 1/1.1 | 1 | 368 | 3.68 | [ |
| MIL-125 | 1560 | 6 | 1.08 | 1.03 | 0.76 | 298 | 4.65 | [ |
| ZIF-8 | — | 3.4~6 | 3.9 | 1.6 | — | 398 | 1.50 | [ |
| MX偏好 | MX/PX | MX/OX | OX/PX | MX | ||||
| ZU-61 | 1384 | 7.8 | 2.9 | — | — | 333 | 3.37 | [ |
| OX偏好 | OX/PX | OX/MX | OX/EB | OX | ||||
| MIL-53(Al) | 1706 | — | 5.2 | 5.1 | 8.2 | 323 | 3.10 | [ |
| Co2(dobdc) | 1410 | 8 | 3.9 | 2.5 | 1.2 | 423 | 3.50 | [ |
| ZUL-C3 | 1200 | 6.2 | 20.06 | 7.92 | 7.51 | 303 | 3.41 | [ |
| UiO-66 | 885 | 5~7 | 2.4 | 1.8 | — | 313 | — | [ |
表2 用于吸附分离C8芳烃异构体的部分MOF材料
| 材料 | 比表面积/m2·g-1 | 孔径/Å | 选择性 | 温度/K | PX吸附量/mmol·g-1 | 文献 | ||
|---|---|---|---|---|---|---|---|---|
| PX/MX | PX/OX | PX/EB | ||||||
| NH2-MIL-125(Ti) | 1305 | 5~7 | 3.0 | 2.2 | 1.6 | 298 | 1.20 | [ |
| Co(aip)(bpy)0.5 | — | — | 30.0 | 16.0 | — | 298 | 1.47 | [ |
| Mn(dhbq)(H2O)2 | 470 | 5.6 | 66.8 | 25.5 | — | 393 | 1.33 | [ |
| MIL-101(Cr) | 3990 | 6 | — | — | — | 313 | 12.31 | [ |
| DUT-8(Cu) | 2685 | 9.3 | 5.4 | 7.2 | 5.9 | 298 | 1.80 | [ |
| Zn-ETTOB | 2594.9 | 7 | 3.9 | 6.2 | 1.2 | 298 | 8.00 | [ |
| MIL-47(V) | 750 | — | 1/1.2 | 1/1.1 | 1 | 368 | 3.68 | [ |
| MIL-125 | 1560 | 6 | 1.08 | 1.03 | 0.76 | 298 | 4.65 | [ |
| ZIF-8 | — | 3.4~6 | 3.9 | 1.6 | — | 398 | 1.50 | [ |
| MX偏好 | MX/PX | MX/OX | OX/PX | MX | ||||
| ZU-61 | 1384 | 7.8 | 2.9 | — | — | 333 | 3.37 | [ |
| OX偏好 | OX/PX | OX/MX | OX/EB | OX | ||||
| MIL-53(Al) | 1706 | — | 5.2 | 5.1 | 8.2 | 323 | 3.10 | [ |
| Co2(dobdc) | 1410 | 8 | 3.9 | 2.5 | 1.2 | 423 | 3.50 | [ |
| ZUL-C3 | 1200 | 6.2 | 20.06 | 7.92 | 7.51 | 303 | 3.41 | [ |
| UiO-66 | 885 | 5~7 | 2.4 | 1.8 | — | 313 | — | [ |
| 混合物 | 在0.14mol/L时的吸收量/% | 不同浓度时的选择性 | ||
|---|---|---|---|---|
| 0.02mol/L | 0.14mol/L | 0.28mol/L | ||
| 对乙基甲苯 | 10 | 1.9 | 1.8 | 1.6 |
| 间乙基甲苯 | 6 | |||
| 对二氯苯 | 24 | 1.5 | 5.1 | — |
| 间二氯苯 | 6 | |||
| 对甲苯胺 | 30 | 1.7 | 1.8 | 1.8 |
| 间甲苯胺 | 18 | |||
| 对甲酚 | 28 | 1.2 | 0.9 | — |
| 间甲酚 | 29 | |||
表3 在0.02mol/L、0.14mol/L和0.28mol/L的竞争批实验中计算出的对位和间位异构体之间的吸收和选择性[27]
| 混合物 | 在0.14mol/L时的吸收量/% | 不同浓度时的选择性 | ||
|---|---|---|---|---|
| 0.02mol/L | 0.14mol/L | 0.28mol/L | ||
| 对乙基甲苯 | 10 | 1.9 | 1.8 | 1.6 |
| 间乙基甲苯 | 6 | |||
| 对二氯苯 | 24 | 1.5 | 5.1 | — |
| 间二氯苯 | 6 | |||
| 对甲苯胺 | 30 | 1.7 | 1.8 | 1.8 |
| 间甲苯胺 | 18 | |||
| 对甲酚 | 28 | 1.2 | 0.9 | — |
| 间甲酚 | 29 | |||
| 材料 | 结构属性 | 吸附量/% | ||||
|---|---|---|---|---|---|---|
| SBET/m2·g-1 | VTotal/cm3·g-1 | 氯苯 | 1,3-二氯苯 | 2-氯甲苯 | 2-氯苯甲醚 | |
| N2H-MIL-125 | 1421 | 0.66 | 41.0 | 40.1 | 34.9 | 27.0 |
| Cu3(BTC)2 | 1200 | 0.47 | 27.2 | 32.0 | 27.0 | 25.4 |
| MIL-125 | 1560 | 0.68 | 45.4 | 43.3 | 41.8 | 27.0 |
| MIL-101 | 2800 | 1.63 | 59.3 | 51.1 | 55.4 | 32.2 |
| UiO-66 | 1380 | 0.52 | 31.7 | 29.0 | 26.9 | 26.9 |
表4 制备的MOF的结构性质及其在浓度1.0mol/L下对氯芳族化合物的吸附能力[58]
| 材料 | 结构属性 | 吸附量/% | ||||
|---|---|---|---|---|---|---|
| SBET/m2·g-1 | VTotal/cm3·g-1 | 氯苯 | 1,3-二氯苯 | 2-氯甲苯 | 2-氯苯甲醚 | |
| N2H-MIL-125 | 1421 | 0.66 | 41.0 | 40.1 | 34.9 | 27.0 |
| Cu3(BTC)2 | 1200 | 0.47 | 27.2 | 32.0 | 27.0 | 25.4 |
| MIL-125 | 1560 | 0.68 | 45.4 | 43.3 | 41.8 | 27.0 |
| MIL-101 | 2800 | 1.63 | 59.3 | 51.1 | 55.4 | 32.2 |
| UiO-66 | 1380 | 0.52 | 31.7 | 29.0 | 26.9 | 26.9 |
| [1] | CANNELL William. Xylenes and ethylbenzene[M]. Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley & Sons, 2000. |
| [2] | MINCEVA Mirjana, RODRIGUES Alírio E. Understanding and revamping of industrial scale SMB units for p-xylene separation[J]. AIChE Journal, 2007, 53(1): 138-149. |
| [3] | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
| [4] | ALAERTS Luc, MAES Michael, VAN DER VEEN Monique A, et al. Metal-organic frameworks as high-potential adsorbents for liquid-phase separations of olefins, alkylnaphthalenes and dichlorobenzenes[J]. Physical Chemistry Chemical Physics, 2009, 11(16): 2903-2911. |
| [5] | LUSI Matteo, BARBOUR Leonard J. Solid-vapor sorption of xylenes: Prioritized selectivity as a means of separating all three isomers using a single substrate[J]. Angewandte Chemie International Edition, 2012, 51(16): 3928-3931. |
| [6] | FURUKAWA Hiroyasu, Ulrich MÜLLER, YAGHI Omar M. “Heterogeneity within order” in metal-organic frameworks[J]. Angewandte Chemie International Edition, 2015, 54(11): 3417-3430. |
| [7] | FEI Honghan, COHEN Seth M. Metalation of a thiocatechol-functionalized Zr(Ⅳ)-based metal-organic framework for selective C-H functionalization[J]. Journal of the American Chemical Society, 2015, 137(6): 2191-2194. |
| [8] | 杨东晓, 熊启钊, 王毅, 等. 多级孔MOF的制备及其吸附分离应用研究进展[J]. 化工进展, 2024, 43(4): 1882-1896. |
| YANG Dongxiao, XIONG Qizhao, WANG Yi, et al. Progress in the preparation of hierarchically porous MOF and applications in adsorption and separation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1882-1896. | |
| [9] | GETMAN Rachel B, Youn-Sang BAE, WILMER Christopher E, et al. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 703-723. |
| [10] | GU Zhiyuan, JIANG Dongqing, WANG Hefang, et al. Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2010, 114(1): 311-316. |
| [11] | LIU Rong, YU Tian, SHI Zheng, et al. The preparation of metal-organic frameworks and their biomedical application[J]. International Journal of Nanomedicine, 2016, 11: 1187-1200. |
| [12] | GÁNDARA F, GOMEZ-LOR B, GUTIÉRREZ-PUEBLA E, et al. An indium layered MOF as recyclable Lewis acid catalyst[J]. Chemistry of Materials, 2008, 20(1): 72-76. |
| [13] | KE Fei, QIU Lingguang, ZHU Junfa. Fe₃O₄@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction[J]. Nanoscale, 2014, 6(3): 1596-1601. |
| [14] | HERM Zoey R, WIERS Brian M, MASON Jarad A, et al. Separation of hexane isomers in a metal-organic framework with triangular channels[J]. Science, 2013, 340(6135): 960-964. |
| [15] | BLOCH Eric D, QUEEN Wendy L, KRISHNA Rajamani, et al. Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ) coordination sites[J]. Science, 2012, 335(6076): 1606-1610. |
| [16] | O-M YAGHI, LI Guangming, LI Hailian. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
| [17] | LI Hailian, EDDAOUDI Mohamed, O’KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
| [18] | YAGHI O M, LI Hailian. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
| [19] | LI Hailian, EDDAOUDI Mohamed, GROY Thomas L, et al. Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC=1,4-benzenedicarboxylate)[J]. Journal of the American Chemical Society, 1998, 120(33): 8571-8572. |
| [20] | FÉREY G, SERRE C, MELLOT-DRAZNIEKS C, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie International Edition, 2004, 43(46): 6296-6301. |
| [21] | FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
| [22] | CHUI Stephen S-Y, LO Samuel M-F, CHARMANT Jonathan P H, et al. A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3] n [J]. Science, 1999, 283(5405): 1148-1150. |
| [23] | PARK Kyo Sung, NI Zheng, CÔTÉ Adrien P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
| [24] | CAVKA Jasmina Hafizovic, Søren JAKOBSEN, OLSBYE Unni, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
| [25] | MOREIRA Mariana A, SANTOS Mónica P S, SILVA Cláudia G, et al. Adsorption equilibrium of xylene isomers and ethylbenzene on MIL-125(Ti)_NH2: The temperature influence on the para-selectivity[J]. Adsorption, 2018, 24(8): 715-724. |
| [26] | YANG Liping, XING Jiacheng, YUAN Danhua, et al. Synthesis of high-crystallinity MIL-125 with outstanding xylene isomer separation performance[J]. Chinese Journal of Catalysis, 2021, 42(12): 2313-2321. |
| [27] | ALAERTS Luc, MAES Michael, JACOBS Pierre A, et al. Activation of the metal-organic framework MIL-47 for selective adsorption of xylenes and other difunctionalized aromatics[J]. Physical Chemistry Chemical Physics, 2008, 10(20): 2979-2985. |
| [28] | CUI Xili, NIU Zheng, SHAN Chuan, et al. Efficient separation of xylene isomers by a guest-responsive metal-organic framework with rotational anionic sites[J]. Nature Communications, 2020, 11(1): 5456. |
| [29] | QIAO Xiaofei, LIU Yusi, YANG Yanqiang, et al. Synthesis optimization of metal-organic frameworks MIL-125 and its adsorption separation on C8 aromatics measured by pulse test and simulation calculation[J]. Journal of Solid State Chemistry, 2021, 296: 121956. |
| [30] | LI Liangying, GUO Lidong, OLSON David H, et al. Discrimination of xylene isomers in a stacked coordination polymer[J]. Science, 2022, 377(6603): 335-339. |
| [31] | Hou Shuliang, Lu Huigong, Gu Yifan, et al. Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone[J]. Chinese Journal of Materials Research, 2017, 31(7): 495-501. |
| [32] | AGRAWAL Mayank, BHATTACHARYYA Souryadeep, HUANG Yi, et al. Liquid-phase multicomponent adsorption and separation of xylene mixtures by flexible MIL-53 adsorbents[J]. The Journal of Physical Chemistry C, 2018, 122(1): 386-397. |
| [33] | PISCOPO C G, POLYZOIDIS A, SCHWARZER M, et al. Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications[J]. Microporous and Mesoporous Materials, 2015, 208: 30-35. |
| [34] | FENG Xiao, JENA Himanshu Sekhar, KRISHNARAJ Chidharth, et al. Generating catalytic sites in UiO-66 through defect engineering[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 60715-60735. |
| [35] | MOREIRA Mariana A, SANTOS João C, FERREIRA Alexandre F P, et al. Reverse shape selectivity in the liquid-phase adsorption of xylene isomers in zirconium terephthalate MOF UiO-66[J]. Langmuir, 2012, 28(13): 5715-5723. |
| [36] | CONG Shenzhen, ZHOU Yunqi, LUO Chenglian, et al. Designing metal-organic framework (MOF) membranes for isomer separation[J]. Angewandte Chemie International Edition, 2024, 63(15): e202319894. |
| [37] | ROSI Nathaniel L, KIM Jaheon, EDDAOUDI Mohamed, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units[J]. Journal of the American Chemical Society, 2005, 127(5): 1504-1518. |
| [38] | PERALTA David, CHAPLAIS Gérald, PAILLAUD Jean-Louis, et al. The separation of xylene isomers by ZIF-8: A demonstration of the extraordinary flexibility of the ZIF-8 framework[J]. Microporous and Mesoporous Materials, 2013, 173: 1-5. |
| [39] | POLYUKHOV Daniil M, PORYVAEV Artem S, GROMILOV Sergey A, et al. Precise measurement and controlled tuning of effective window sizes in ZIF-8 framework for efficient separation of xylenes[J]. Nano Letters, 2019, 19(9): 6506-6510. |
| [40] | 金彬浩, 朱小倩, 柯天, 等. 芳香烃/环烷烃吸附分离材料研究进展[J]. 化工进展, 2024, 43(4): 1863-1881. |
| JIN Binhao, ZHU Xiaoqian, KE Tian, et al. Advances in adsorbents for aromatics/cycloalkanes separation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1863-1881. | |
| [41] | SAPIANIK Aleksandr A, DUDKO Evgeny R, KOVALENKO Konstantin A, et al. Metal-organic frameworks for highly selective separation of xylene isomers and single-crystal X-ray study of aromatic guest-host inclusion compounds[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14768-14777. |
| [42] | HYUN Taehoon, PARK Junkil, Jungseob SO, et al. Unexpected molecular sieving of xylene isomer using tethered ligand in polymer-metal-organic frameworks (polyMOFs)[J]. Advanced Science, 2024, 11(30): 2402980-2402988. |
| [43] | KIM Seung-Ik, LEE Seulchan, CHUNG Yongchul G, et al. The origin of p-xylene selectivity in a DABCO pillar-layered metal-organic framework: A combined experimental and computational investigation[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31227-31236. |
| [44] | YANG Liping, LIU Hanbang, YUAN Danhua, et al. Efficient separation of xylene isomers by a pillar-layer metal-organic framework[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 41600-41608. |
| [45] | YE Ziming, ZHANG Xuefeng, LIU Dexuan, et al. A gating ultramicroporous metal-organic framework showing high adsorption selectivity, capacity and rate for xylene separation[J]. Science China Chemistry, 2022, 68(8): 1552-1558. |
| [46] | 陈乐, 种海玲, 张致慧, 等. CTAB改性Cu-BTC材料的合成及其吸附分离二甲苯异构体的性能[J]. 化工进展, 2024, 43(1): 455-464. |
| CHEN Le, CHONG Hailing, ZHANG Zhihui, et al. Synthesis of Cu-BTC modified by CTAB and its adsorption and separation of xylene isomers[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 455-464. | |
| [47] | GONZALEZ Miguel I, KAPELEWSKI Matthew T, BLOCH Eric D, et al. Separation of xylene isomers through multiple metal site interactions in metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(9): 3412-3422. |
| [48] | LI Jing, DENG Xiuping, YUAN Wenbing, al at. A zinc-octacarboxylate MOF with an unusual (6,8)-connected ocu topology for high-capacity adsorptive separation of C8 alkylaromatics[J]. Chemical Engineering Journal, 2023, 474: 145694-145700. |
| [49] | 邹逸风, 吴楠桦, 靳栋梁, 等. 改性MIL-53(Al)吸附分离二甲苯异构体分子模拟[J]. 石油化工, 2023, 52(11): 1551-1558. |
| ZOU Yifeng, WU Nanhua, JIN Dongliang, et al. Adsorption separation of xylene isomers using modified MIL-53(Al) materials: A molecular simulation study[J]. Petrochemical Technology, 2023, 52(11): 1551-1558. | |
| [50] | ZHANG Lu, ZHANG Hao, ZHAO Zhen, et al. Molecular dynamics simulation of the adsorption and diffusion of C8 aromatic isomers in MIL-47(V)[J]. Langmuir, 2024, 40(4): 2385-2395. |
| [51] | TRENS Philippe, BELARBI Hichem, SHEPHERD Céline, et al. Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101(Cr): An experimental and computational study[J]. Microporous and Mesoporous Materials, 2014, 183: 17-22. |
| [52] | JI Guojian, XIANG Ting, ZHOU Xiaoqing, et al. Molecular dynamics simulation of adsorption and separation of xylene isomers by Cu-HKUST-1[J]. RSC Advances, 2022, 12(54): 35290-35299. |
| [53] | GRANATO Miguel Angelo, MARTINS Vanessa Duarte, FERREIRA Alexandre Filipe P, et al. Adsorption of xylene isomers in MOF UiO-66 by molecular simulation[J]. Microporous and Mesoporous Materials, 2014, 190: 165-170. |
| [54] | FINSY Vincent, VERELST Harry, ALAERTS Luc, et al. Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47[J]. Journal of the American Chemical Society, 2008, 130(22): 7110-7118. |
| [55] | ZHOU Jingyi, KE Tian, SONG Yifei, et al. Highly efficient separation of C8 aromatic isomers by rationally designed nonaromatic metal-organic frameworks[J]. Journal of the American Chemical Society, 2022, 144(46): 21417-21424. |
| [56] | ALAERTS Luc, MAES Michael, GIEBELER Lars, et al. Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53[J]. Journal of the American Chemical Society, 2008, 130(43): 14170-14178. |
| [57] | 崔希利, 李凌云, 邢华斌, 等. 金属有机框架材料吸附分离C9芳烃同分异构体混合物的方法: CN 118271150A[P]. 2024-07-02. |
| CUI Xili, Li Lingyun, Xing Huabin, et al. Method for adsorption separation of C9 aromatic hydrocarbon isomers mixture using metal organic framework materials: CN 118271150A[P]. 2024-07-02. | |
| [58] | KIM Hee-Young, KIM Se-Na, KIM Jun, et al. Liquid phase adsorption of selected chloroaromatic compounds over metal organic frameworks[J]. Materials Research Bulletin, 2013, 48(11): 4499-4505. |
| [59] | XU Guohai, ZHANG Xiaohuang, GUO Peng, et al. Mn(Ⅱ)-based MIL-53 analogues: synthesis using neutral bridging μ2-ligands and application in liquid-phase adsorption and separation of C6—C8 aromatics[J]. Journal of the American Chemical Society, 2010, 132(11): 3656. |
| [60] | LEE Ji-Sun, JHUNG Sung-Hwa. Vapor-phase adsorption of alkylaromatics on aluminum-trimesate MIL-96: An unusual increase of adsorption capacity with temperature[J]. Microporous and Mesoporous Materials, 2010, 129(1/2): 274-277. |
| [61] | 王天佑, 毛星星, 张义云, 等. UIO-66-NH2金属-有机骨架材料吸附分离四甲苯异构体[J]. 高校化学工程学报, 2022, 36(4): 488-497. |
| WANG Tianyou, MAO Xingxing, ZHANG Yiyun, et al. Adsorption and separation of tetramethylbenze isomers by metal-organic frameworks UIO-66-NH2 [J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(4): 488-497. |
| [1] | 杨证禄, 杨立峰, 路晓飞, 锁显, 张安运, 崔希利, 邢华斌. 机器学习加速多孔吸附剂筛选发现的研究进展[J]. 化工进展, 2025, 44(8): 4288-4301. |
| [2] | 刘燕燕, 李飞泉, 刘栋, 王俊涛, 罗雪. 纳观尺度下再生沥青-集料界面性质的分子模拟[J]. 化工进展, 2025, 44(8): 4302-4310. |
| [3] | 刘力涵, 王琪君, 王轩, 彭阳峰, 徐小飞. 丁苯橡胶应力软化的全原子分子动力学模拟[J]. 化工进展, 2025, 44(8): 4331-4340. |
| [4] | 黄可儿, 刘佳豪, 李昊明, 周天航, 高金森, 蓝兴英. 基于分子动力学模拟的胺溶剂碳捕集过程自扩散系数[J]. 化工进展, 2025, 44(8): 4352-4364. |
| [5] | 杨傲, 邓苇, 黎勇, 罗婧, 王梓霖, 张俊, 申威峰. 基于热力学拓扑理论的三塔变压精馏分离四氢呋喃/甲醇/乙醇多目标优化设计[J]. 化工进展, 2025, 44(8): 4582-4593. |
| [6] | 高岩, 李永帅, 李高洋, 潘慧, 凌昊. Agrawal分壁精馏塔的动态控制[J]. 化工进展, 2025, 44(8): 4594-4605. |
| [7] | 汪国超, 丁晖殿, 师丽, 李强, 夏涛, 苑杨. 复合精馏序列的温度推断控制[J]. 化工进展, 2025, 44(8): 4720-4731. |
| [8] | 杨勇, 张钊, 王东亮, 周怀荣, 赵子豪, 李煜坤. 二甲苯异构体不同分离策略的技术经济评价[J]. 化工进展, 2025, 44(8): 4732-4740. |
| [9] | 高姣姣, 颜诗宇, 杨太顺, 谢尚志, 杨艳娟, 徐晶. 不同晶型Al2O3负载Ru催化剂对聚乙烯氢解的影响[J]. 化工进展, 2025, 44(7): 3917-3927. |
| [10] | 唐轩, 白晓炜, 张飞飞, 李晋平, 杨江峰. 沸石分子筛用于CO2-N2-CH4筛分分离的研究进展[J]. 化工进展, 2025, 44(7): 3938-3949. |
| [11] | 梁书玮, 俞杰, 谢钟音, 裴鉴禄, 林中鑫, 陈泽翔. 共价有机框架吸附放射性气态碘的研究进展[J]. 化工进展, 2025, 44(7): 3965-3975. |
| [12] | 王影, 汤孟菲, 王莹, 张传芳, 张国杰, 刘俊, 赵钰琼. 碱金属催化煤热解制备CNT复合材料用于吸附罗丹明B[J]. 化工进展, 2025, 44(7): 3985-3996. |
| [13] | 赵保华, 刘晓娜, 胡彦云, 贾天聪, 谢强, 贺燕, 马相帅, 马双忱. 传统电吸附与流动电极电容去离子技术对比和发展趋势[J]. 化工进展, 2025, 44(7): 4101-4116. |
| [14] | 叶晓生, 袁婷, 贾鑫, 任庆霞. 多元复合纳米材料去除微囊藻毒素-LR研究进展[J]. 化工进展, 2025, 44(7): 4144-4157. |
| [15] | 陈倩, 仝坤, 谢加才, 邵志国, 聂凡, 李成涛. 含聚油泥处理技术研究进展[J]. 化工进展, 2025, 44(7): 4158-4168. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |