化工进展 ›› 2025, Vol. 44 ›› Issue (9): 4968-4978.DOI: 10.16085/j.issn.1000-6613.2024-1213
• 工业催化 • 上一篇
陈子朝(
), 何方书, 胡强, 杨扬, 陈汉平, 杨海平(
)
收稿日期:2024-07-26
修回日期:2024-10-11
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
杨海平
作者简介:陈子朝(1997—),男,博士研究生,研究方向为二氧化碳的利用。E-mail:903307351@qq.com。
基金资助:
CHEN Zizhao(
), HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping(
)
Received:2024-07-26
Revised:2024-10-11
Online:2025-09-25
Published:2025-09-30
Contact:
YANG Haiping
摘要:
甲烷干重整反应是将CH4和CO2两种温室气体转化为合成气的有效途径,然而催化剂在反应过程中容易积炭或烧结失活,因此如何设计出高效和稳定的催化剂是实现甲烷干重整(DRM)工业化应用的关键。本文主要总结近年来甲烷干重整抗积炭Ni基催化剂的研究进展,首先从传统催化剂存在的局限性出发分析了甲烷干重整Ni基催化剂的抗积炭策略。其次,详细讨论了不同双金属Ni基催化剂的协同作用以及抗积炭机制、不同结构催化剂的设计策略及优势以及甲烷干重整催化剂抗积炭机理,并对催化剂积炭原因以及抗积炭调控方法进行了分析。最后,对甲烷干重整的研究现状进行了总结与展望,探讨了甲烷干重整研究领域未来可能发展的方向,如更加多元的合金催化剂或高熵合金催化剂的开发、更长时间稳定性的测试等。本文旨在为甲烷干重整抗失活催化剂的设计提供参考。
中图分类号:
陈子朝, 何方书, 胡强, 杨扬, 陈汉平, 杨海平. 甲烷干重整抗积炭Ni基催化剂研究进展[J]. 化工进展, 2025, 44(9): 4968-4978.
CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978.
| [1] | MEEHL Gerald A, WASHINGTON Warren M, COLLINS William D, et al. How much more global warming and sea level rise?[J]. Science, 2005, 307(5716): 1769-1772. |
| [2] | SAEIDI Samrand, AMIN Nor Aishah Saidina, RAHIMPOUR Mohammad Reza. Hydrogenation of CO2 to value-added products—A review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5: 66-81. |
| [3] | LI Lei, ZHAO Ning, WEI Wei, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences[J]. Fuel, 2013, 108: 112-130. |
| [4] | 何展军,黄敏,林铁军,等. 光热催化甲烷干重整研究进展[J]. 物理化学学报, 2023, 39(9): 28-40. |
| HE Zhanjun, HUANG Min, LIN Tiejun, et al. Recent advances in dry reforming of methane via photothermocatalysis[J]. Acta Physico-Chimica Sinica, 2023, 39(9): 28-40. | |
| [5] | ZHANG Xiao, XU Yao, LIU Yang, et al. A novel Ni-MoC x O y interfacial catalyst for syngas production via the chemical looping dry reforming of methane[J]. Chem, 2023, 9(1): 102-116. |
| [6] | 苏海兰,张丹,豆高锋. 甲烷干重整反应镁铝尖晶石镍基催化剂的研究进展[J]. 工业催化, 2024, 32(6): 30-35. |
| SU Hailan, ZHANG Dan, DOU Gaofeng. Research progress on magnesium aluminum spinel nickel based catalysts for dry reforming of methane[J]. Industrial Catalysis, 2024, 32(6): 30-35. | |
| [7] | TORREZ-HERRERA J J, KORILI S A, GIL A. Recent progress in the application of Ni-based catalysts for the dry reforming of methane[J]. Catalysis Reviews, 2023, 65(4): 1300-1357. |
| [8] | 侯人玮,柳圣华,冯效迁. CH4-CO2重整反应用Ni基合金催化剂研究进展[J]. 低碳化学与化工, 2023, 48(6): 1-9. |
| HOU Renwei, LIU Shenghua, FENG Xiaoqian. Research progress on Ni-based alloy catalysts in CH4-CO2 reforming reaction[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 1-9. | |
| [9] | ZHU Xinli, HUO Peipei, ZHANG Yueping, et al. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane[J]. Applied Catalysis B: Environmental, 2008, 81(1/2): 132-140. |
| [10] | 王明智,张秋林,张腾飞,等. Ni基甲烷二氧化碳重整催化剂研究进展[J]. 化工进展, 2015, 34(8): 3027-3033, 3039. |
| WANG Mingzhi, ZHANG Qiulin, ZHANG Tengfei, et al. Advance in Ni-based catalysts for the carbondioxide reforming of methane[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3027-3033, 3039. | |
| [11] | ROSLI Siti Nor Amira, ABIDIN Sumaiya Zainal, OSAZUWA Osarieme Uyi, et al. The effect of oxygen mobility/vacancy on carbon gasification in nano catalytic dry reforming of methane: A review[J]. Journal of CO2 Utilization, 2022, 63: 102109. |
| [12] | HE Lei, LI Mingrun, LI Wencui, et al. Robust and coke-free Ni catalyst stabilized by 1—2 nm-thick multielement oxide for methane dry reforming[J]. ACS Catalysis, 2021, 11(20): 12409-12416. |
| [13] | BAKTASH Elham, LITTLEWOOD Patrick, Reinhard SCHOMÄCKER, et al. Alumina coated nickel nanoparticles as a highly active catalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 179: 122-127. |
| [14] | LI Haocheng, HAO Cong, TIAN Jingqing, et al. Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination[J]. Chem Catalysis, 2022, 2(7): 1748-1763. |
| [15] | KIM Sunkyu, LAUTERBACH Jochen, SASMAZ Erdem. Yolk-shell Pt-NiCe@SiO2 single-atom-alloy catalysts for low-temperature dry reforming of methane[J]. ACS Catalysis, 2021, 11(13): 8247-8260. |
| [16] | 闫金彪,王莎,张华荣. 甲烷干重整制氢催化剂抗积碳性能研究进展[J]. 上海工程技术大学学报, 2023, 37(1): 1-6, 40. |
| YAN Jinbiao, WANG Sha, ZHANG Huarong. Research progress of carbon deposition resistance of catalyst for dry reforming of methane to hydrogen[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 1-6, 40. | |
| [17] | SASSON BITTERS Jaylin, HE Tina, NESTLER Elizabeth, et al. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane[J]. Journal of Energy Chemistry, 2022, 68: 124-142. |
| [18] | Linghui LYU, SHENGENE Makpal, MA Qingxiang, et al. Synergy of macro-meso bimodal pore and Ni-Co alloy for enhanced stability in dry reforming of methane[J]. Fuel, 2022, 310: 122375. |
| [19] | GUO Shuowen, SUN Yinghui, ZHANG Yanbin, et al. Bimetallic nickel-cobalt catalysts and their application in dry reforming reaction of methane[J]. Fuel, 2024, 358: 130290. |
| [20] | KIM Dong Hyun, SEO Jeong-Cheol, KIM Yong Jun, et al. Ni-Co alloy catalyst derived from Ni x Co y /MgAl2O4 via exsolution method for high coke resistance toward dry reforming of methane[J]. Catalysis Today, 2024, 425: 114337. |
| [21] | CHEN Shuyue, YANG Bo. Activity and stability of alloyed NiCo catalyst for the dry reforming of methane: A combined DFT and microkinetic modeling study[J]. Catalysis Today, 2022, 400: 59-65. |
| [22] | CHAGHOURI M, CIOTONEA C, MOHAMAD ALI M, et al. Deposition precipitation derived Ni-Co active sites for enhanced dry reforming of methane performances[J]. Catalysis Today, 2024, 429: 114458. |
| [23] | CUI Tianxiao, CHEN Qicheng, ZHANG Yingjin, et al. Promotion of activity and stability mechanisms of adjusting the Co ratio in nickel-based catalysts for dry reforming of methane reaction[J]. Molecular Catalysis, 2024, 556: 113946. |
| [24] | LIU Jun, ZHANG Yu, LIANG Zhoujie, et al. Enhancing the dry reforming of methane over Ni-Co-Y/WC-AC catalyst: Influence of the different Ni/Co ratio on the catalytic performance[J]. Fuel, 2023, 335: 127082. |
| [25] | OSOJNIK ČRNIVEC I G, DJINOVIĆ P, ERJAVEC B, et al. Effect of synthesis parameters on morphology and activity of bimetallic catalysts in CO2-CH4 reforming[J]. Chemical Engineering Journal, 2012, 207-208: 299-307. |
| [26] | THEOFANIDIS Stavros Alexandros, GALVITA Vladimir V, POELMAN Hilde, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe[J]. ACS Catalysis, 2015, 5(5): 3028-3039. |
| [27] | TOMISHIGE Keiichi, LI Dalin, TAMURA Masazumi, et al. Nickel-iron alloy catalysts for reforming of hydrocarbons: Preparation, structure, and catalytic properties[J]. Catalysis Science & Technology, 2017, 7(18): 3952-3979. |
| [28] | DHILLON Gagandeep Singh, CAO Guoqiang, YI Nan. The role of Fe in Ni-Fe/TiO2 catalysts for the dry reforming of methane[J]. Catalysts, 2023, 13(8): 1171. |
| [29] | ZHANG Tingting, LIU Zhongxian, ZHU Yi-An, et al. Dry reforming of methane on Ni-Fe-MgO catalysts: Influence of Fe on carbon-resistant property and kinetics[J]. Applied Catalysis B: Environmental, 2020, 264: 118497. |
| [30] | MARGOSSIAN Tigran, LARMIER Kim, KIM Sung Min, et al. Supported bimetallic NiFe nanoparticles through colloid synthesis for improved dry reforming performance[J]. ACS Catalysis, 2017, 7(10): 6942-6948. |
| [31] | Koustuv RAY, SENGUPTA Siddhartha, Goutam DEO. Reforming and cracking of CH4 over Al2O3 supported Ni, Ni-Fe and Ni-Co catalysts[J]. Fuel Processing Technology, 2017, 156: 195-203. |
| [32] | KIM Sung Min, ABDALA Paula Macarena, MARGOSSIAN Tigran, et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J]. Journal of the American Chemical Society, 2017, 139(5): 1937-1949. |
| [33] | LI Yubin, WANG Qianqian, CAO Min, et al. Structural evolution of robust Ni3Fe1 alloy on Al2O3 in dry reforming of methane: Effect of iron-surplus strategy from Ni1Fe1 to Ni3Fe1 [J]. Applied Catalysis B: Environmental, 2023, 331: 122669. |
| [34] | LIANG Defang, WANG Yishuang, CHEN Mingqiang, et al. Dry reforming of methane over Mn-Ni/attapulgite: Effect of Mn content on the active site distribution and catalytic performance[J]. Fuel, 2022, 321: 124032. |
| [35] | SHAHNAZI Amirhossein, FIROOZI Sadegh. Mesoporous LaNi1- x Mn x O3 perovskite with enhanced catalytic performance and coke resistance synthesized via glycine-assisted spray pyrolysis for methane dry reforming[J]. Molecular Catalysis, 2023, 547: 113320. |
| [36] | LI Weisong, Xiangyu JIE, WANG Changzhen, et al. MnO x -promoted, coking-resistant nickel-based catalysts for microwave-initiated CO2 utilization[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6914-6923. |
| [37] | YAO Lu, GALVEZ Maria Elena, HU Changwei, et al. Synthesis gas production via dry reforming of methane over manganese promoted nickel/cerium-zirconium oxide catalyst[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16645-16656. |
| [38] | KAZEMI Saba, ALAVI Seyed Mehdi, REZAEI Mehran, et al. Fabrication and evaluation of the Mn-promoted Ni/FeAl2O4 catalysts in the thermocatalytic decomposition of methane: Impact of various promoters[J]. Fuel, 2023, 342: 127797. |
| [39] | Sangwook JOO, KIM Kyeounghak, KWON Ohhun, et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane[J]. Angewandte Chemie International Edition, 2021, 60(29): 15912-15919. |
| [40] | JIN Feikai, FU Yu, KONG Wenbo, et al. Stable trimetallic NiFeCu catalysts with high carbon resistance for dry reforming of methane[J]. ChemPlusChem, 2020, 85(6): 1120-1128. |
| [41] | ABDEL KARIM ARAMOUNI Nicolas, ZEAITER Joseph, KWAPINSKI Witold, et al. Trimetallic Ni-Co-Ru catalyst for the dry reforming of methane: Effect of the Ni/Co ratio and the calcination temperature[J]. Fuel, 2021, 300: 120950. |
| [42] | RAMEZANI Yalda, MESHKANI Fereshteh, REZAEI Mehran. Promotional effect of Mg in trimetallic nickel-manganese-magnesium nanocrystalline catalysts in CO2 reforming of methane[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22347-22356. |
| [43] | ZHANG Junshe, LI Fanxing. Coke-resistant Ni@SiO2 catalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 176: 513-521. |
| [44] | YANG Juanjuan, WANG Jiaqi, ZHAO Jingjing, et al. CO2 conversion via dry reforming of methane on a core-shell Ru@SiO2 catalyst[J]. Journal of CO2 Utilization, 2022, 57: 101893. |
| [45] | Sonali DAS, Kang Hui LIM, GANI Terry Z H, et al. Bi-functional CeO2 coated NiCo-MgAl core-shell catalyst with high activity and resistance to coke and H2S poisoning in methane dry reforming[J]. Applied Catalysis B: Environmental, 2023, 323: 122141. |
| [46] | Zi-Yian LIM, TU Junling, XU Yongjun, et al. Ni@ZrO2 yolk-shell catalyst for CO2 methane reforming: Effect of Ni@SiO2 size as the hard-template[J]. Journal of Colloid and Interface Science, 2021, 590: 641-651. |
| [47] | WANG Fagen, HAN Bolin, ZHANG Linjia, et al. CO2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon[J]. Applied Catalysis B: Environmental, 2018, 235: 26-35. |
| [48] | LI Ziwei, MO Liuye, KATHIRASER Yasotha, et al. Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction[J]. ACS Catalysis, 2014, 4(5): 1526-1536. |
| [49] | WANG Changzhen, QIU Yuan, ZHANG Xiaoming, et al. Geometric design of a Ni@silica nano-capsule catalyst with superb methane dry reforming stability: Enhanced confinement effect over the nickel site anchoring inside a capsule shell with an appropriate inner cavity[J]. Catalysis Science & Technology, 2018, 8(19): 4877-4890. |
| [50] | WANG Guangying, LIANG Yan, SONG Jian, et al. Study on high activity and outstanding stability of hollow-NiPt@SiO2 core-shell structure catalyst for DRM reaction[J]. Frontiers in Chemistry, 2020, 8: 220. |
| [51] | KOSARI Mohammadreza, ASKARI Saeed, SEAYAD Abdul Majeed, et al. Strong coke-resistivity of spherical hollow Ni/SiO2 catalysts with shell-confined high-content Ni nanoparticles for methane dry reforming with CO2 [J]. Applied Catalysis B: Environmental, 2022, 310: 121360. |
| [52] | WANG Han, KIM Sunkyu, SASMAZ Erdem. Numerical investigation of the reaction kinetics of dry reforming of methane over the yolk-shell and single-atom alloy catalysts[J]. Chemical Engineering Journal, 2022, 450: 138111. |
| [53] | 邓少碧,边洲峰. 核壳结构在甲烷干重整中的应用[J]. 化工进展, 2023, 42(1): 247-254. |
| DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. | |
| [54] | ZHAO Yu, KANG Yunqing, LI Hui, et al. CO2 conversion to synthesis gas via DRM on the durable Al2O3/Ni/Al2O3 sandwich catalyst with high activity and stability[J]. Green Chemistry, 2018, 20(12): 2781-2787. |
| [55] | GOULD Troy D, IZAR Alan, WEIMER Alan W, et al. Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions[J]. ACS Catalysis, 2014, 4(8): 2714-2717. |
| [56] | KAVIANI Maryam, REZAEI Mehran, ALAVI Seyed Mehdi, et al. Biogas dry reforming over nickel-silica sandwiched core-shell catalysts with various shell thicknesses[J]. Fuel, 2024, 355: 129533. |
| [57] | DAS S, ASHOK J, BIAN Z, et al. Silica-ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights[J]. Applied Catalysis B: Environmental, 2018, 230: 220-236. |
| [58] | DOU Jian, ZHANG Riguang, HAO Xiaobin, et al. Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2019, 254: 612-623. |
| [59] | AMENT Kevin, WAGNER Daniel R, Thomas GÖTSCH, et al. Enhancing the catalytic activity of palladium nanoparticles via sandwich-like confinement by thin titanate nanosheets[J]. ACS Catalysis, 2021, 11(5): 2754-2762. |
| [60] | NICOLOSI Valeria, CHHOWALLA Manish, KANATZIDIS Mercouri G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419. |
| [61] | QU Hao, YANG Hui, HAN Libo, et al. Sandwich-structured nickel/kaolinite catalyst with boosted stability for dry reforming of methane with carbon dioxide[J]. Chemical Engineering Journal, 2023, 453: 139694. |
| [62] | WEN Shipeng, LIANG Meili, ZOU Junma, et al. Synthesis of a SiO2 nanofibre confined Ni catalyst by electrospinning for the CO2 reforming of methane[J]. Journal of Materials Chemistry A, 2015, 3(25): 13299-13307. |
| [63] | ZHENG Jiajia, IMPENG Sarawoot, LIU Jun, et al. Mo promoting Ni-based catalysts confined by halloysite nanotubes for dry reforming of methane: Insight of coking and H2S poisoning resistance[J]. Applied Catalysis B: Environmental, 2024, 342: 123369. |
| [64] | ABDULLAH Bawadi, GHANI Nur Azeanni ABD, Dai-Viet N VO. Recent advances in dry reforming of methane over Ni-based catalysts[J]. Journal of Cleaner Production, 2017, 162: 170-185. |
| [65] | 苏海兰,孙加亮,芦良. 限域功能材料在甲烷重整催化剂中的应用[J]. 化工新型材料, 2023, 51(S2): 199-202, 207. |
| SU Hailan, SUN Jialiang, LU Liang. Application of confined functional materials in methane reforming catalyst[J]. New Chemical Materials, 2023, 51(S2): 199-202, 207. | |
| [66] | KOZONOE Camila Emilia, SANTOS Vinícius Modolo, SCHMAL Martin. Investigating the stability of Ni and Fe nanoparticle distribution and the MWCNT structure in the dry reforming of methane[J]. Environmental Science and Pollution Research, 2023, 30(51): 111382-111396. |
| [67] | MA Qingxiang, WANG Ding, WU Mingbo, et al. Effect of catalytic site position: Nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming[J]. Fuel, 2013, 108: 430-438. |
| [68] | LI Huanxuan, SU Liya, ZHENG Junting, et al. MOFs derived carbon supporting CuCo nanospheres as efficient catalysts of peroxymonosulfate for rapid removal of organic pollutant[J]. Chemical Engineering Journal, 2023, 451: 139114. |
| [69] | ZHANG Hanguang, HWANG Sooyeon, WANG Maoyu, et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139(40): 14143-14149. |
| [70] | WANG Jing, QI Tianqinji, LI Guangming, et al. Elucidating the promoting mechanism of coordination-driven self-assembly MOFs/SiO2 composite derived catalyst for dry reforming of methane with CO2 [J]. Fuel, 2022, 330: 125569. |
| [71] | LIANG Tengyun, RAJA Duraisamy Senthil, CHIN Kah Chun, et al. Bimetallic metal-organic framework-derived hybrid nanostructures as high-performance catalysts for methane dry reforming[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15183-15193. |
| [72] | ZHANG Qian, AKRI Mohcin, YANG Yiwen, et al. Atomically dispersed metals as potential coke-resistant catalysts for dry reforming of methane[J]. Cell Reports Physical Science, 2023, 4(3): 101310. |
| [73] | WU Jinwei, GAO Jie, LIAN Shuangshuang, et al. Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C-H activation[J]. Applied Catalysis B: Environmental, 2022, 314: 121516. |
| [74] | YU Haoran, WANG Yehua, TAO Xuyingnan, et al. Interfacial metal-support interaction and catalytic performance of perovskite LaCrO3-supported Ru catalyst[J]. ACS Applied Materials & Interfaces, 2024, 16(14): 17483-17492. |
| [75] | WANG Dingdi, LITTLEWOOD Patrick, MARKS Tobin J, et al. Coking can enhance product yields in the dry reforming of methane[J]. ACS Catalysis, 2022, 12(14): 8352-8362. |
| [76] | AZANCOT Lola, BOBADILLA Luis F, CENTENO Miguel A, et al. Effect of potassium loading on basic properties of Ni/MgAl2O4 catalyst for CO2 reforming of methane[J]. Journal of CO2 Utilization, 2021, 52: 101681. |
| [77] | WANG Zhitao, SHAO Xin, LARCHER Alfons, et al. A study on carbon formation over fibrous NiO/CeO2 nanocatalysts during dry reforming of methane[J]. Catalysis Today, 2013, 216: 44-49. |
| [78] | ZHANG Xiaoyu, DENG Jiang, PUPUCEVSKI Max, et al. High-performance binary Mo-Ni catalysts for efficient carbon removal during carbon dioxide reforming of methane[J]. ACS Catalysis, 2021, 11(19): 12087-12095. |
| [79] | JI L, TANG S, ZENG H C, et al. CO2 reforming of methane to synthesis gas over sol-gel-made Co/γ-Al2O3 catalysts from organometallic precursors[J]. Applied Catalysis A: General, 2001, 207(1/2): 247-255. |
| [80] | NIU Juntian, LI Kuo, ZHANG Cunxin, et al. Mechanism study on carbon atom growth on different Ni facets in CO2 reforming reaction[J]. International Journal of Hydrogen Energy, 2024, 58: 1332-1344. |
| [81] | V Yu BYCHKOV, TYULENIN Yu P, FIRSOVA A A, et al. Carbonization of nickel catalysts and its effect on methane dry reforming[J]. Applied Catalysis A: General, 2013, 453: 71-79. |
| [82] | AKRI Mohcin, ZHAO Shu, LI Xiaoyu, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nature Communications, 2019, 10(1): 5181. |
| [83] | TANG Yu, WEI Yuechang, WANG Ziyun, et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4 [J]. Journal of the American Chemical Society, 2019, 141(18): 7283-7293. |
| [84] | CHONG CHI Cheng, CHENG Yoke Wang, SETIABUDI H D, et al. Dry reforming of methane over Ni/dendritic fibrous SBA-15 (Ni/DFSBA-15): Optimization, mechanism, and regeneration studies[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8507-8525. |
| [85] | MARINHO André L A, TONIOLO Fabio S, NORONHA Fabio B, et al. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane[J]. Applied Catalysis B: Environmental, 2021, 281: 119459. |
| [86] | Luis SANDOVAL-DIAZ, CRUZ Daniel, VUIJK Maurits, et al. Metastable nickel-oxygen species modulate rate oscillations during dry reforming of methane[J]. Nature Catalysis, 2024, 7: 161-171. |
| [1] | 赵用明, 卜亿峰, 王涛, 杜冰, 门卓武. 费托合成催化剂动态置换与稳态工艺的集成优化[J]. 化工进展, 2025, 44(8): 4536-4544. |
| [2] | 杨嘉聪, 程光旭, 贾彤华, 姜召. 煤制甲醇与绿氢高效耦合新工艺模拟及技术经济分析[J]. 化工进展, 2025, 44(8): 4657-4668. |
| [3] | 周颖, 白保华, 蒲田, 周恩泽, 胡建清, 张松林, 周红军, 徐春明. 零碳产业园的构建与示范[J]. 化工进展, 2025, 44(7): 4282-4286. |
| [4] | 张巍, 梁垚城, 伍乔, 付业昊, 尹艳山, 成珊, 阮敏, 刘涛, 周昭仪, 张凯凯, 李丹聪. 基于金属离子改性的Cu-SSZ-13催化剂在NH3-SCR脱硝中的应用[J]. 化工进展, 2025, 44(7): 3879-3891. |
| [5] | 王惠, 刘家旭. SSZ-39分子筛的合成及其NH3-SCR应用研究进展[J]. 化工进展, 2025, 44(7): 3892-3906. |
| [6] | 卢朋, 张迪, 刘瑶瑶, 于万金, 刘武灿, 张建君. 气相脱氟化氢合成C2氢氟烯烃催化剂的研究进展[J]. 化工进展, 2025, 44(7): 3907-3916. |
| [7] | 高姣姣, 颜诗宇, 杨太顺, 谢尚志, 杨艳娟, 徐晶. 不同晶型Al2O3负载Ru催化剂对聚乙烯氢解的影响[J]. 化工进展, 2025, 44(7): 3917-3927. |
| [8] | 陈东健, 孙雨倩, 银凤翔. FeNi3-Fe3O4/CN催化剂的制备及其电催化析氧性能[J]. 化工进展, 2025, 44(7): 3928-3937. |
| [9] | 唐轩, 白晓炜, 张飞飞, 李晋平, 杨江峰. 沸石分子筛用于CO2-N2-CH4筛分分离的研究进展[J]. 化工进展, 2025, 44(7): 3938-3949. |
| [10] | 于宁, 王秋月, 王志才, 高子怡, 柴永明, 董斌. 双位点协同调控增强钙钛矿氧化物的水氧化活性[J]. 化工进展, 2025, 44(7): 3976-3984. |
| [11] | 李翔, 吴张永, 蒋佳骏, 朱启晨, 龚湫. 海水基MoS2/SiC二元纳米流体摩擦学特性[J]. 化工进展, 2025, 44(7): 4050-4060. |
| [12] | 许志成, 高宁博, 全翠, 宋庆彬. 低温等离子体协同催化转化生物质气化焦油研究进展[J]. 化工进展, 2025, 44(6): 3432-3442. |
| [13] | 李红伟, 许涵侨, 赵燕, 刘耀宗, 滕志君, 季东, 李贵贤. 铂基催化剂电催化甲醇氧化研究进展与展望[J]. 化工进展, 2025, 44(6): 3443-3456. |
| [14] | 孔肖阳, 刘振涛, 邹予桐, 王丹丹, 段爱军, 徐春明, 王喜龙. 多环芳烃加氢裂化制BTX催化剂研究进展[J]. 化工进展, 2025, 44(6): 3468-3485. |
| [15] | 刘诗哲. 甲基环己烷脱氢催化体系的研究进展[J]. 化工进展, 2025, 44(6): 3486-3496. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |