化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4754-4771.DOI: 10.16085/j.issn.1000-6613.2025-0550
• 过程系统工程的模拟与仿真 • 上一篇
陈昇1(
), 刘忠伟2, 吕蓉蓉1, 苗超3, 周斯雅4, 江晶晶3, 陈锐4, 黄刚华3, 何萌1, 朱丽云5(
)
收稿日期:2025-04-14
修回日期:2025-05-06
出版日期:2025-08-25
发布日期:2025-09-08
通讯作者:
陈昇,朱丽云
作者简介:陈昇(1987—),男,博士,正高级工程师,研究方向为多相流、承压设备风险防控、泄漏检监测、腐蚀防护。E-mail:chensheng_csei@163.com。
基金资助:
CHEN Sheng1(
), LIU Zhongwei2, LYU Rongrong1, MIAO Chao3, ZHOU Siya4, JIANG Jingjing3, CHEN Rui4, HUANG Ganghua3, HE Meng1, ZHU Liyun5(
)
Received:2025-04-14
Revised:2025-05-06
Online:2025-08-25
Published:2025-09-08
Contact:
CHEN Sheng, ZHU Liyun
摘要:
高含硫天然气脱硫净化装置酸气急冷塔凝露冲蚀易造成高危介质泄漏并导致非计划停工或安全事故。为揭示其内多介质传热、冷凝、传质、腐蚀多场交互损伤过程,指导工业装置冲蚀损伤早期预测与风险防控,本文采用欧拉-拉格朗日方法,耦入非均匀相间曳力模型,加入酸气冷凝相变模型和溶解化学平衡方程,嵌入冲刷与腐蚀速率耦合预测模型,建立了一种酸气凝露冲蚀多场交互损伤模拟方法,并模拟考察了不同液滴相质量分数、气相冷凝速率、液滴大小以及二氧化碳和硫化氢浓度等参数的影响。结果表明:该模拟方法能较好揭示多场交互损伤过程,与工业实测数据对比,预测误差在10%以内;发现影响冲蚀速率的因子与影响权重顺序为:液滴相质量分数>液滴大小>气相冷凝速率>CO2体积分数>H2S体积分数,影响冲蚀减薄位置的因子及影响权重顺序为:液滴相质量分数>液滴大小>气相冷凝速率>CO2体积分数>H2S体积分数。
中图分类号:
陈昇, 刘忠伟, 吕蓉蓉, 苗超, 周斯雅, 江晶晶, 陈锐, 黄刚华, 何萌, 朱丽云. 高含硫天然气脱硫净化装置酸气凝露冲蚀多场交互损伤模拟[J]. 化工进展, 2025, 44(8): 4754-4771.
CHEN Sheng, LIU Zhongwei, LYU Rongrong, MIAO Chao, ZHOU Siya, JIANG Jingjing, CHEN Rui, HUANG Ganghua, HE Meng, ZHU Liyun. Simulation of multi-field interactive damage caused by acid gas condensation erosion in high-sulfur natural gas desulfurization purification units[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4754-4771.
| 类型 | 参数 | 数值 |
|---|---|---|
| 气相 | ||
| 氮气 | 体积分数εnitrogen | 0.658 |
| 二氧化碳 | 体积分数εcarbon-dioxide | 0.256 |
| 水蒸气 | 体积分数εwater-vapor | 0.063 |
| 硫化氢 | 体积分数εhydrogen-sulfide | 0.023 |
| 液相 | ||
| 水 | — | — |
| 二氧化碳(溶解) | — | — |
| 硫化氢(溶解) | — | — |
| 离散相 | ||
| 液滴 | 质量流率/kg·s-1 | 0.0586 |
表1 工程参数
| 类型 | 参数 | 数值 |
|---|---|---|
| 气相 | ||
| 氮气 | 体积分数εnitrogen | 0.658 |
| 二氧化碳 | 体积分数εcarbon-dioxide | 0.256 |
| 水蒸气 | 体积分数εwater-vapor | 0.063 |
| 硫化氢 | 体积分数εhydrogen-sulfide | 0.023 |
| 液相 | ||
| 水 | — | — |
| 二氧化碳(溶解) | — | — |
| 硫化氢(溶解) | — | — |
| 离散相 | ||
| 液滴 | 质量流率/kg·s-1 | 0.0586 |
| 类型 | 参数 | 数值 |
|---|---|---|
| 速度入口 | 入口压力/Pa | 106000 |
| 温度/K | 313.15 | |
| 湍流强度/% | 7.306 | |
| 水力直径/m | 0.6 | |
| 速度/m·s-1 | 23.34 | |
| 压力出口 | 出口压力/Pa | 97000 |
| 湍流强度/% | 7.306 | |
| 水力直径/m | 0.6 | |
| 壁面材料 | 离散边界条件类型 | 逸出 |
| 密度/kg·m-3 | 7850 | |
| 壁面边界条件 | 温度/K | 293.15 |
| 壁厚/m | 0.01 | |
| 离散相剪切条件 | 反射系数, φ=0.5 | |
| 壁面粗糙度 | 标准 |
表2 模拟相关参数总结
| 类型 | 参数 | 数值 |
|---|---|---|
| 速度入口 | 入口压力/Pa | 106000 |
| 温度/K | 313.15 | |
| 湍流强度/% | 7.306 | |
| 水力直径/m | 0.6 | |
| 速度/m·s-1 | 23.34 | |
| 压力出口 | 出口压力/Pa | 97000 |
| 湍流强度/% | 7.306 | |
| 水力直径/m | 0.6 | |
| 壁面材料 | 离散边界条件类型 | 逸出 |
| 密度/kg·m-3 | 7850 | |
| 壁面边界条件 | 温度/K | 293.15 |
| 壁厚/m | 0.01 | |
| 离散相剪切条件 | 反射系数, φ=0.5 | |
| 壁面粗糙度 | 标准 |
| 项目 | 公式 |
|---|---|
| 气相黏度拟合公式 | |
| 气相热导率 | |
| 气相比热容 | |
| 液相中CO2(l)溶解度 | |
| 液相中H2S(l)溶解度 |
表3 气相和液相物性参数
| 项目 | 公式 |
|---|---|
| 气相黏度拟合公式 | |
| 气相热导率 | |
| 气相比热容 | |
| 液相中CO2(l)溶解度 | |
| 液相中H2S(l)溶解度 |
| 位置 | 壁厚/mm | 减薄速率/mm·a-1 |
|---|---|---|
| a1 | 5.25 | 0.38 |
| a2 | 6.01 | 0.32 |
| a3 | 5.00 | 0.40 |
| a4 | 6.00 | 0.32 |
| a5 | 6.13 | 0.31 |
| a6 | 8.96 | 0.08 |
| a7 | 8.99 | 0.08 |
| a8 | 5.08 | 0.41 |
| a9 | 4.45 | 0.44 |
| a10 | 3.63 | 0.51 |
| a11 | 3.91 | 0.49 |
| a12 | 4.13 | 0.47 |
表4 实际壁厚与减薄速率
| 位置 | 壁厚/mm | 减薄速率/mm·a-1 |
|---|---|---|
| a1 | 5.25 | 0.38 |
| a2 | 6.01 | 0.32 |
| a3 | 5.00 | 0.40 |
| a4 | 6.00 | 0.32 |
| a5 | 6.13 | 0.31 |
| a6 | 8.96 | 0.08 |
| a7 | 8.99 | 0.08 |
| a8 | 5.08 | 0.41 |
| a9 | 4.45 | 0.44 |
| a10 | 3.63 | 0.51 |
| a11 | 3.91 | 0.49 |
| a12 | 4.13 | 0.47 |
| 液滴相质量分数 | 气相冷凝速率/kg·s-1 | 硫化氢体积分数 | 二氧化碳体积分数 | 液滴大小/µm |
|---|---|---|---|---|
| 0.05 | 0.36 | 0.01 | 0.200 | 30 |
| 0.1 | 0.10 | 0.02 | 0.225 | 50 |
| 0.15 | 0.12 | 0.03 | 0.256 | 100 |
| 0.2 | 0.14 | 0.04 | 0.300 | 150 |
| 0.18 | 30~150 |
表5 关键参数变化
| 液滴相质量分数 | 气相冷凝速率/kg·s-1 | 硫化氢体积分数 | 二氧化碳体积分数 | 液滴大小/µm |
|---|---|---|---|---|
| 0.05 | 0.36 | 0.01 | 0.200 | 30 |
| 0.1 | 0.10 | 0.02 | 0.225 | 50 |
| 0.15 | 0.12 | 0.03 | 0.256 | 100 |
| 0.2 | 0.14 | 0.04 | 0.300 | 150 |
| 0.18 | 30~150 |
| [1] | 高芸, 王蓓, 胡迤丹, 等. 2023年中国天然气发展述评及2024年展望[J]. 天然气工业, 2024, 44(2): 166-177. |
| GAO Yun, WANG Bei, HU Yidan, et al. Development of China’s natural gas: Review 2023 and outlook 2024[J]. Natural Gas Industry, 2024, 44(2): 166-177. | |
| [2] | 中国石油国家高端智库研究中心. 中国天然气发展报告(2024)[M]. 北京: 石油工业出版社, 2024: 7. |
| China National Petroleum Corporation National High-End Think Tank Research Center. China natural gas development report (2024)[M]. Beijing: Petroleum Industry Press, 2024: 7. | |
| [3] | 国家能源局. 2024年能源工作指导意见[R/OL]. (2024-03-18) [2024-06-01]. . |
| National Energy Administration. Guiding opinions on energy work in 2024[R/OL]. (2024-03-18)[2024-06-01]. . | |
| [4] | 钱兴坤, 陆如泉. 2024年国内外油气行业发展报告[R]. 北京: 中国石油集团经济技术研究院, 2025: 1. |
| QIAN Xingkun, LU Ruquan. Domestic and international oil and gas industry development report 2024[R]. Beijing: CNPC Economics & Technology Research Institute, 2025: 1. | |
| [5] | 谢克昌. 面向2035年我国能源发展的思考与建议[J]. 中国工程科学, 2022, 24(6): 1-7. |
| XIE Kechang. China’s energy development for 2035: Strategic thinking and suggestions[J]. Strategic Study of CAE, 2022, 24(6): 1-7. | |
| [6] | 国内硫化氢含量最高整装气田达产铁山坡特高含硫气田“少井高产”开发获重大突破[J]. 非常规油气, 2023, 10(4): 38. |
| The integrated gas field with the highest hydrogen sulfide content in China has reached the output, and the development of Tieshanpo ultra-high sulfur gas field has achieved a major breakthrough[J]. Unconventional Oil & Gas, 2023, 10(4): 38. | |
| [7] | 薛勇勇, 刘阳, 刘琳琳, 等. 基于层次分析法优化天然气净化工艺[J]. 化工进展, 2016, 35(5): 1298-1302. |
| XUE Yongyong, LIU Yang, LIU Linlin, et al. Optimization of purification process for natural gas using analytic hierarchy process[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1298-1302. | |
| [8] | 裴爱霞. 高含硫天然气净化装置腐蚀特征与典型腐蚀案例分析[J]. 炼油技术与工程, 2024, 54(2): 50-55. |
| PEI Aixia. Corrosion characteristics and typical cases of high sulfur natural gas purification unit[J]. Petroleum Refinery Engineering, 2024, 54(2): 50-55. | |
| [9] | 包振宇, 张杰, 王团亮, 等. 天然气净化装置脱硫单元腐蚀机理及案例分析[J]. 石油化工设备技术, 2021, 42(2): 56-61, 8. |
| BAO Zhenyu, ZHANG Jie, WANG Tuanliang, et al. Corrosion mechanism and case analysis of desulfurization unit in natural gas purification plant[J]. Petrochemical Equipment Technology, 2021, 42(2): 56-61, 8. | |
| [10] | 熊钢, 胡勇, 傅敬强, 等. 高含硫天然气净化技术新进展与发展方向[J]. 天然气工业, 2023, 43(9): 34-48. |
| XIONG Gang, HU Yong, FU Jingqiang, et al. New progress and development direction of high-sulfur natural gas purification technology[J]. Natural Gas Industry, 2023, 43(9): 34-48. | |
| [11] | 周斯雅, 李涛, 刘文祝, 等. 天然气净化装置长周期运行对策分析[J]. 天然气与石油, 2021, 39(6): 12-18. |
| ZHOU Siya, LI Tao, LIU Wenzhu, et al. Analysis on countermeasures for long-cycle operation of natural gas purification plant[J]. Natural Gas and Oil, 2021, 39(6): 12-18. | |
| [12] | 张强, 黄刚华, 江晶晶, 等. 含硫气田天然气净化厂腐蚀控制与监/检测[J]. 石油与天然气化工, 2018, 47(2): 19-25. |
| ZHANG Qiang, HUANG Ganghua, JIANG Jingjing, et al. Corrosion control and monitoring/detection of natural gas purification plant in sour gas field[J]. Chemical Engineering of Oil & Gas, 2018, 47(2): 19-25. | |
| [13] | 商剑峰, 李坛, 刘元直, 等. 高含硫天然气净化厂管线腐蚀监测方法的优选与应用——以普光气田为例[J]. 天然气工业, 2014, 34(1): 134-138. |
| SHANG Jianfeng, LI Tan, LIU Yuanzhi, et al. Selection and application of corrosion monitoring methods in high-sulfur natural gas purification plants in the Puguang Gas Field[J]. Natural Gas Industry, 2014, 34(1): 134-138. | |
| [14] | 卢国敏. 天然气高效净化装置的数值模拟研究[J]. 天然气化工, 2018, 43(2): 60-63, 118. |
| LU Guomin. Numerical simulation of efficient purification plant for natural gas[J]. Natural Gas Chemical Industry, 2018, 43(2): 60-63, 118. | |
| [15] | 邱星城, 谢晓玲, 廖杰, 等. 天然气净化厂文丘里组合式急冷塔流场模拟与优化[J]. 天然气与石油, 2024, 42(3): 62-68. |
| QIU Xingcheng, XIE Xiaoling, LIAO Jie, et al. Flow field simulation and optimization of combined Venturi quench tower in natural gas purification plants[J]. Natural Gas and Oil, 2024, 42(3): 62-68. | |
| [16] | WANG Weiqiang, SUN Yihe, WANG Bo, et al. CFD-based erosion and corrosion modeling of a pipeline with CO2-containing gas water two-phase flow[J]. Energies, 2022, 15(5): 1694. |
| [17] | SHI Zeyang, Jianjun LYU, Zhipeng E, et al. Numerical simulation of acid gas distribution and corrosion characteristics in connecting pipe of lean/rich amine heat exchanger[J]. Coatings, 2022, 12(10): 1460. |
| [18] | 陈宏霞, 刘霖, 肖红洋, 等. 气液相变换热过程中界面腐蚀的基础研究进展[J]. 化工进展, 2019, 38(12): 5225-5237. |
| CHEN Hongxia, LIU Lin, XIAO Hongyang, et al. Basic research progress of interface corrosion in gas-liquid phase transformation heat process[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5225-5237. | |
| [19] | NIU Luna, HAN Lei, CHEN Wenwu, et al. Analysis and prediction of corrosion risk in atmospheric distillation tower overhead system [J]. China Petroleum Processing and Petrochemical Technology, 2021, 23(1): 21-30. |
| [20] | ZHANG Jianwen, XIAO Han, DOU Zhan. Erosion-corrosion failure of overhead air cooler in atmospheric tower[J]. Journal of the Chinese Institute of Engineers, 2024, 47(7): 804-829. |
| [21] | XIANG Yong, LI Chen, LONG Zhengwei, et al. Electrochemical and corrosion behavior of 316L stainless steel in a CO2-SO2-H2O mixture[J]. International Journal of Electrochemical Science, 2018, 13(4): 3613-3624. |
| [22] | 李茂东, 曾彬, 杨麟, 等. 含Cl-炉水对锅炉水冷壁管腐蚀行为的影响[J]. 材料保护, 2013, 46(11): 61-64, 8. |
| LI Maodong, ZENG Bin, YANG Lin, et al. Effect of chloride ion in industrial boiler water on corrosion behavior of water-cooling wall tube[J]. Materials Protection, 2013, 46(11): 61-64, 8. | |
| [23] | 王凯, 南翠红, 卢金玲. 流体动力学过程在流动腐蚀行为中的作用机制[J]. 化工进展, 2020, 39(S2): 8-18. |
| WANG Kai, Cuihong NAN, LU Jinling. Mechanism of hydrodynamic process in flow corrosion behavior[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 8-18. | |
| [24] | 叶福相, 姚军, 刘玉发, 等. 多因素影响下的X80管道钢两相流冲蚀腐蚀特性[J]. 化工进展, 2021, 40(12): 6450-6459. |
| YE Fuxiang, YAO Jun, LIU Yufa, et al. Erosion corrosion characteristics of X80 pipeline steel in two-phase flow under the influence of multiple factors[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6450-6459. | |
| [25] | RAMESHK M, SOLTANIEH M, MASOUDPANAH S M. Effects of flow velocity and impact angle on erosion-corrosion of an API-5L X65 steel coated by plasma nitriding of hard chromium underlayer[J]. Journal of Materials Research and Technology, 2020, 9(5): 10054-10061. |
| [26] | VENKATRAMAN KRISHNAN Anirudh, LIM C Y H. Elucidating the specific and combined effects of particle size, impact angle, velocity and stress from an external load on the slurry erosion of mild steel S275JR[J]. Journal of Materials Research and Technology, 2021, 14: 1052-1064. |
| [27] | RAJKUMAR YESHWANTH R, SHIRAZI SIAMACK A, KARIMI SOROOR. Particle size and concentration effects on solid particle erosion with PIV measurements of particle velocities[C]//ASME 2020 Fluids Engineering Division Summer Meeting Collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. 2020 |
| [28] | 陈元达, 叶晓浩, 胡政, 等. 弯管液固两相流动冲蚀磨损的数值预测[J]. 失效分析与预防, 2022, 17(3): 169-176. |
| CHEN Yuanda, YE Xiaohao, HU Zheng, et al. Numerical prediction of erosion wears in elbow for liquid-solid flow[J]. Failure Analysis and Prevention, 2022, 17(3): 169-176. | |
| [29] | LIU Enbin, HUANG Shen, TIAN Dingchao, et al. Experimental and numerical simulation study on the erosion behavior of the elbow of gathering pipeline in shale gas field[J]. Petroleum Science, 2024, 21(2): 1257-1274. |
| [30] | YAN H, LIU Y, LI J, et al. Numerical simulation of erosion wear and leakage flow field of gas-solid two-phase flow in a T-shaped pipeline[J]. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 2022, 38(2): 1-16. |
| [31] | 于英利, 付旭晨, 戴莹莹, 等. 燃煤电站锅炉水冷壁壁面高温腐蚀问题分析与对策[J]. 化工进展, 2020, 39(S1): 90-96. |
| YU Yingli, FU Xuchen, DAI Yingying, et al. Analysis and countermeasure of high temperature corrosion on water wall of coal-fired power plant boiler[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 90-96. | |
| [32] | MENTER F, SECHNER R, MATYUSHENKO A. Best practice: RANS turbulence modeling in Ansys CFD[M]. Canonsburg: ANSYS Inc, 2021. |
| [33] | CHEN Sheng, FAN Yiping, KANG Haoyuan, et al. Gas-solid-liquid reactive CFD simulation of an industrial RFCC riser with investigation of feed injection[J]. Chemical Engineering Science, 2021, 242: 116740. |
| [34] | BENYAHIA Sofiane. Analysis of model parameters affecting the pressure profile in a circulating fluidized bed[J]. AIChE Journal, 2012, 58(2): 427-439. |
| [35] | CHEN Sheng, SHI Jiarui, YUAN Jun, et al. Multiscale CFD simulation of multiphase erosion process in a connecting pipe of industrial polycrystalline silicon unit[J]. Processes, 2023, 11(8): 2510. |
| [36] | GIDASPOW Dimitri. Multiphase flow and fluidization: Continuum and kinetic theory descriptions[M]. Pittsburgh: Academic press, 1994. |
| [37] | WANG Wei, LU Bona, GENG Jingwei, et al. Mesoscale drag modeling: A critical review[J]. Current Opinion in Chemical Engineering, 2020, 29: 96-103. |
| [38] | MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55: 193-208. |
| [39] | 宋成立, 宋晓俊, 陈庆国, 等. 20钢在油气田中CO2与H2S共存环境下的腐蚀行为及机理[J]. 机械工程材料, 2023, 47(3): 60-65. |
| SONG Chengli, SONG Xiaojun, CHEN Qingguo, et al. Corrosion behavior and mechanism of 20 steel under CO2/H2S coexisted environment in oil and gas field[J]. Materials for Mechanical Engineering, 2023, 47(3): 60-65. | |
| [40] | GUNN D J. Transfer of heat or mass to particles in fixed and fluidised beds[J]. International Journal of Heat and Mass Transfer, 1978, 21(4): 467-476. |
| [41] | LI Jinghai, GE Wei, WANG Wei, et al. Extension of the emms model to gas-liquid systems[M]//From Multiscale Modeling to Meso-Science.Berlin: Springer, 2013: 111-145. |
| [42] | ADNAN Muhammad, ZHANG Nan, SUN Fangfang, et al. Numerical simulation of a semi-industrial scale CFB riser using coarse-grained DDPM-EMMS modelling[J]. The Canadian Journal of Chemical Engineering, 2018, 96(6): 1403-1416. |
| [43] | CHEN Sheng, FAN Yiping, YAN Zihan, et al. CFD simulation of gas-solid two phase flow and mixing in a FCC riser with feedstock injection[J]. Powder Technology, 2016, 287: 29-42. |
| [1] | 李卡, 夏宇轩, 吴晓琴, 易兰, 罗浩. 双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟[J]. 化工进展, 2025, 44(8): 4381-4393. |
| [2] | 李增, 赵云鹏, 李宇慧, 柳楠, 朱春梦, 石孝刚, 高金森, 蓝兴英. 基于CFD模拟的催化裂化沉降器跑剂异常诊断[J]. 化工进展, 2025, 44(8): 4430-4442. |
| [3] | 王兆霖, 张志刚, 周静, 高琛, 彭克臣, 姜敏迪, 奚溪, 徐胜利, 刘红. Gyroid三周期极小曲面换热构件流动换热特性[J]. 化工进展, 2025, 44(8): 4454-4462. |
| [4] | 张建伟, 阴苗苗, 董鑫, 冯颖. 基于振荡射流的撞击流反应器混合特性数值模拟[J]. 化工进展, 2025, 44(8): 4488-4499. |
| [5] | 王雅彬, 赵碧丹, 徐繁, 兰斌, 王军武. 基于结构双流体模型的循环流化床全回路模拟[J]. 化工进展, 2025, 44(8): 4500-4512. |
| [6] | 王蓝欣, 李飞, 钱亚男, 田于杰, 申峻, 王维. 固定床反应器不同水分煤热解数值模拟[J]. 化工进展, 2025, 44(8): 4513-4525. |
| [7] | 安澍, 马永丽, 丰雷, 张紫浩, 刘明言. 网式水基泡沫发泡过程CFD模拟[J]. 化工进展, 2025, 44(8): 4545-4555. |
| [8] | 翟宇航, 丛立新, 韩冰, 王启林, 邹慧传. 大尺度氢气云爆燃压力波形成机制及灾害效应判定[J]. 化工进展, 2025, 44(8): 4709-4719. |
| [9] | 张若琛, 王家瑞, 王斯民, 张早校. 微米级湿颗粒的动态碰撞行为及能量耗散机制[J]. 化工进展, 2025, 44(7): 3718-3726. |
| [10] | 杨心柳, 刘强, 曹倩, 崔岳铭, 方朝合. 储层渗流对单地热井同轴换热器取热特性的影响[J]. 化工进展, 2025, 44(7): 3860-3868. |
| [11] | 周鹏辉, 曾琳, 代黎, 冯小波, 倪笛. 响应面法和熵权法对离心风机的多目标性能优化[J]. 化工进展, 2025, 44(6): 3271-3279. |
| [12] | 周鹏辉, 曾琳, 代黎, 李嘉乐, 陈建琦, 李剑平, 汪华林. 微旋流混合器的混合特性数值计算[J]. 化工进展, 2025, 44(6): 3280-3287. |
| [13] | 陈巨辉, 张谦, 李丹, 李魏康, 陈轲, 周欢, ZHURAVKOV Michael, LAPATSIN Siarhel, 姜文锐. 基于DEM-PPM方法的非球形颗粒流动特性[J]. 化工进展, 2025, 44(6): 3382-3392. |
| [14] | 贺逸健, 刘祥坤, 施尧, 段学志. 乙烷氧化脱氢制乙烯催化剂颗粒外形设计[J]. 化工进展, 2025, 44(6): 3497-3508. |
| [15] | 程崇律, 单聪慧, 张孟凡, WEN X Jennifer, 徐宝鹏. 氢安全建模研究进展[J]. 化工进展, 2025, 44(3): 1285-1297. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |