化工进展 ›› 2025, Vol. 44 ›› Issue (7): 4251-4266.DOI: 10.16085/j.issn.1000-6613.2024-0774
• 资源与环境化工 • 上一篇
收稿日期:2024-05-10
修回日期:2024-10-09
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
马玉龙
作者简介:马晶(1996—),女,硕士研究生,研究方向为资源循环利用与绿色化工。E-mail:majing_5@126.com。
基金资助:
MA Jing(
), MA Yulong(
), ZHU Li, QIAO Song, SUN Yonggang, JI Wenxin
Received:2024-05-10
Revised:2024-10-09
Online:2025-07-25
Published:2025-08-04
Contact:
MA Yulong
摘要:
随着煤气化技术的快速发展,其副产物煤气化渣的产量也逐年增加,引发的环境问题日益突出。煤气化渣中硅铝矿物是其主要的存在成分,而复杂的硅铝结构对其资源化利用带来挑战。本文以产自宁东的煤气化粗渣为研究对象,采用碱熔活化法和亚熔盐活化法对其中的硅铝矿物进行活化,结合响应面法设计实验并建模分析,得到最优条件和各因素间的交互作用对活化效果的影响。结果表明,在碱熔活化作用下,硅活化率、铝活化率、活化产物浸提液中硅铝比最高分别可达到64.91%、34.14%和10;亚熔盐活化粗渣中,硅活化率、铝活化率、活化产物浸提液中硅铝比最高分别可达到63.14%、24.78%和23。两种活化过程中,影响粗渣中硅铝物种活化效果的主要因素均为碱渣比,且硅活化率和铝活化率随着碱渣比的增大而提高,各因素之间的交互作用对活化效果均存在一定影响,并发现粗渣中硅铝矿物在亚熔盐体系中存在SOD → FAU → CHA的晶体转化路径。本研究旨为粗渣中硅铝物种的高值化利用提供科学依据。
中图分类号:
马晶, 马玉龙, 朱莉, 乔松, 孙永刚, 吉文欣. 不同方法对煤气化粗渣中硅铝矿物的活化[J]. 化工进展, 2025, 44(7): 4251-4266.
MA Jing, MA Yulong, ZHU Li, QIAO Song, SUN Yonggang, JI Wenxin. Activation of silica-aluminium minerals of coal gasification coarse slag by different methods[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4251-4266.
| 样品 | 质量分数/% |
|---|---|
| SiO2 | 42.39 |
| Fe2O3 | 20.6 |
| Al2O3 | 14.29 |
| CaO | 10.68 |
| MgO | 2.58 |
| K2O | 2.47 |
| SO3 | 2.27 |
| Na2O | 1.56 |
| TiO2 | 1.32 |
表1 煤气化粗渣的化学组成
| 样品 | 质量分数/% |
|---|---|
| SiO2 | 42.39 |
| Fe2O3 | 20.6 |
| Al2O3 | 14.29 |
| CaO | 10.68 |
| MgO | 2.58 |
| K2O | 2.47 |
| SO3 | 2.27 |
| Na2O | 1.56 |
| TiO2 | 1.32 |
| 序号 | 碱渣比 | 温度/℃ | 时间/h | 响应值 | ||
|---|---|---|---|---|---|---|
| 硅活化率/% | 铝活化率/% | 硅铝比 | ||||
| 1 | 2.0 | 500 | 4 | 53.08 | 23.15 | 6 |
| 2 | 2.0 | 500 | 2 | 62.57 | 33.27 | 5 |
| 3 | 1.5 | 600 | 1 | 48.81 | 17.06 | 7 |
| 4 | 2.0 | 700 | 2 | 66.37 | 26.11 | 6 |
| 5 | 2.5 | 600 | 3 | 92.75 | 40.96 | 6 |
| 6 | 1.0 | 500 | 4 | 25.69 | 10.67 | 6 |
| 7 | 1.5 | 600 | 3 | 30.71 | 20.83 | 4 |
| 8 | 1.5 | 600 | 3 | 32.17 | 24.32 | 3 |
| 9 | 1.5 | 800 | 3 | 35.67 | 10.80 | 8 |
| 10 | 1.5 | 600 | 5 | 47.61 | 16.63 | 7 |
| 11 | 1.0 | 700 | 2 | 21.62 | 6.14 | 9 |
| 12 | 0.5 | 600 | 3 | 10.18 | 3.75 | 7 |
| 13 | 1.5 | 600 | 3 | 20.98 | 21.67 | 2 |
| 14 | 2.0 | 700 | 4 | 58.62 | 16.84 | 9 |
| 15 | 1.0 | 700 | 4 | 24.14 | 6.70 | 9 |
| 16 | 1.5 | 400 | 3 | 42.54 | 18.37 | 6 |
| 17 | 1.5 | 600 | 3 | 31.30 | 19.84 | 4 |
| 18 | 1.0 | 500 | 2 | 27.58 | 5.06 | 12 |
| 19 | 1.5 | 600 | 3 | 31.47 | 22.16 | 4 |
| 20 | 1.5 | 600 | 3 | 30.17 | 20.83 | 5 |
表2 煤气化粗渣碱熔活化响应面模拟实验设计及结果
| 序号 | 碱渣比 | 温度/℃ | 时间/h | 响应值 | ||
|---|---|---|---|---|---|---|
| 硅活化率/% | 铝活化率/% | 硅铝比 | ||||
| 1 | 2.0 | 500 | 4 | 53.08 | 23.15 | 6 |
| 2 | 2.0 | 500 | 2 | 62.57 | 33.27 | 5 |
| 3 | 1.5 | 600 | 1 | 48.81 | 17.06 | 7 |
| 4 | 2.0 | 700 | 2 | 66.37 | 26.11 | 6 |
| 5 | 2.5 | 600 | 3 | 92.75 | 40.96 | 6 |
| 6 | 1.0 | 500 | 4 | 25.69 | 10.67 | 6 |
| 7 | 1.5 | 600 | 3 | 30.71 | 20.83 | 4 |
| 8 | 1.5 | 600 | 3 | 32.17 | 24.32 | 3 |
| 9 | 1.5 | 800 | 3 | 35.67 | 10.80 | 8 |
| 10 | 1.5 | 600 | 5 | 47.61 | 16.63 | 7 |
| 11 | 1.0 | 700 | 2 | 21.62 | 6.14 | 9 |
| 12 | 0.5 | 600 | 3 | 10.18 | 3.75 | 7 |
| 13 | 1.5 | 600 | 3 | 20.98 | 21.67 | 2 |
| 14 | 2.0 | 700 | 4 | 58.62 | 16.84 | 9 |
| 15 | 1.0 | 700 | 4 | 24.14 | 6.70 | 9 |
| 16 | 1.5 | 400 | 3 | 42.54 | 18.37 | 6 |
| 17 | 1.5 | 600 | 3 | 31.30 | 19.84 | 4 |
| 18 | 1.0 | 500 | 2 | 27.58 | 5.06 | 12 |
| 19 | 1.5 | 600 | 3 | 31.47 | 22.16 | 4 |
| 20 | 1.5 | 600 | 3 | 30.17 | 20.83 | 5 |
| 序号 | 碱渣比 | 液固比 | 温度/℃ | 时间/h | 响应值 | ||
|---|---|---|---|---|---|---|---|
| 硅活化率/% | 铝活化率/% | 硅铝比 | |||||
| 1 | 1.6 | 0.50 | 250 | 3.25 | 50.22 | 15.05 | 8 |
| 2 | 2.0 | 0.75 | 200 | 2.5 | 52.34 | 23.5 | 6 |
| 3 | 0.4 | 0.75 | 200 | 2.5 | 14.9 | 1.25 | 30 |
| 4 | 1.2 | 0.25 | 200 | 2.5 | 47.43 | 13.1 | 9 |
| 5 | 1.6 | 1.00 | 150 | 1.75 | 54.84 | 19.51 | 7 |
| 6 | 1.6 | 0.50 | 150 | 3.25 | 64.83 | 17.25 | 9 |
| 7 | 1.6 | 1.00 | 150 | 3.25 | 51.05 | 22.13 | 6 |
| 8 | 1.2 | 0.75 | 200 | 4 | 46.24 | 8.3 | 14 |
| 9 | 0.8 | 1.00 | 250 | 1.75 | 36.98 | 9.25 | 10 |
| 10 | 1.6 | 0.50 | 250 | 1.75 | 55.17 | 18.96 | 7 |
| 11 | 1.2 | 0.75 | 200 | 2.5 | 46.68 | 9.57 | 12 |
| 12 | 1.6 | 1.00 | 250 | 1.75 | 59.38 | 24.31 | 6 |
| 13 | 1.2 | 0.75 | 200 | 1 | 44.93 | 9.87 | 11 |
| 14 | 0.8 | 1.00 | 150 | 3.25 | 34.96 | 3.96 | 22 |
| 15 | 1.2 | 0.75 | 300 | 2.5 | 51.02 | 16.04 | 6 |
| 16 | 1.2 | 1.25 | 200 | 2.5 | 41.22 | 17.1 | 6 |
| 17 | 1.2 | 0.75 | 200 | 2.5 | 53.22 | 8.34 | 16 |
| 18 | 0.8 | 0.50 | 150 | 3.25 | 41.14 | 4.71 | 22 |
| 19 | 0.8 | 1.00 | 150 | 1.75 | 24.92 | 5.23 | 12 |
| 20 | 1.2 | 0.75 | 200 | 2.5 | 48.77 | 13.7 | 9 |
| 21 | 0.8 | 0.50 | 150 | 1.75 | 25.94 | 2.72 | 24 |
| 22 | 1.6 | 1.00 | 250 | 3.25 | 55.65 | 25.25 | 6 |
| 23 | 1.6 | 0.50 | 150 | 1.75 | 63.63 | 17 | 9 |
| 24 | 1.2 | 0.75 | 200 | 2.5 | 56.05 | 11.75 | 12 |
| 25 | 0.8 | 0.50 | 250 | 3.25 | 33.75 | 3.7 | 23 |
| 26 | 1.2 | 0.75 | 100 | 2.5 | 43.44 | 8.83 | 12 |
| 27 | 1.2 | 0.75 | 200 | 2.5 | 49.89 | 7.43 | 17 |
| 28 | 1.2 | 0.75 | 200 | 2.5 | 56.68 | 11.24 | 13 |
| 29 | 0.8 | 1.00 | 250 | 3.25 | 43.44 | 9.33 | 12 |
| 30 | 0.8 | 0.50 | 250 | 1.75 | 40.57 | 6.16 | 17 |
表3 煤气化粗渣亚熔盐活化响应面模拟实验设计及结果
| 序号 | 碱渣比 | 液固比 | 温度/℃ | 时间/h | 响应值 | ||
|---|---|---|---|---|---|---|---|
| 硅活化率/% | 铝活化率/% | 硅铝比 | |||||
| 1 | 1.6 | 0.50 | 250 | 3.25 | 50.22 | 15.05 | 8 |
| 2 | 2.0 | 0.75 | 200 | 2.5 | 52.34 | 23.5 | 6 |
| 3 | 0.4 | 0.75 | 200 | 2.5 | 14.9 | 1.25 | 30 |
| 4 | 1.2 | 0.25 | 200 | 2.5 | 47.43 | 13.1 | 9 |
| 5 | 1.6 | 1.00 | 150 | 1.75 | 54.84 | 19.51 | 7 |
| 6 | 1.6 | 0.50 | 150 | 3.25 | 64.83 | 17.25 | 9 |
| 7 | 1.6 | 1.00 | 150 | 3.25 | 51.05 | 22.13 | 6 |
| 8 | 1.2 | 0.75 | 200 | 4 | 46.24 | 8.3 | 14 |
| 9 | 0.8 | 1.00 | 250 | 1.75 | 36.98 | 9.25 | 10 |
| 10 | 1.6 | 0.50 | 250 | 1.75 | 55.17 | 18.96 | 7 |
| 11 | 1.2 | 0.75 | 200 | 2.5 | 46.68 | 9.57 | 12 |
| 12 | 1.6 | 1.00 | 250 | 1.75 | 59.38 | 24.31 | 6 |
| 13 | 1.2 | 0.75 | 200 | 1 | 44.93 | 9.87 | 11 |
| 14 | 0.8 | 1.00 | 150 | 3.25 | 34.96 | 3.96 | 22 |
| 15 | 1.2 | 0.75 | 300 | 2.5 | 51.02 | 16.04 | 6 |
| 16 | 1.2 | 1.25 | 200 | 2.5 | 41.22 | 17.1 | 6 |
| 17 | 1.2 | 0.75 | 200 | 2.5 | 53.22 | 8.34 | 16 |
| 18 | 0.8 | 0.50 | 150 | 3.25 | 41.14 | 4.71 | 22 |
| 19 | 0.8 | 1.00 | 150 | 1.75 | 24.92 | 5.23 | 12 |
| 20 | 1.2 | 0.75 | 200 | 2.5 | 48.77 | 13.7 | 9 |
| 21 | 0.8 | 0.50 | 150 | 1.75 | 25.94 | 2.72 | 24 |
| 22 | 1.6 | 1.00 | 250 | 3.25 | 55.65 | 25.25 | 6 |
| 23 | 1.6 | 0.50 | 150 | 1.75 | 63.63 | 17 | 9 |
| 24 | 1.2 | 0.75 | 200 | 2.5 | 56.05 | 11.75 | 12 |
| 25 | 0.8 | 0.50 | 250 | 3.25 | 33.75 | 3.7 | 23 |
| 26 | 1.2 | 0.75 | 100 | 2.5 | 43.44 | 8.83 | 12 |
| 27 | 1.2 | 0.75 | 200 | 2.5 | 49.89 | 7.43 | 17 |
| 28 | 1.2 | 0.75 | 200 | 2.5 | 56.68 | 11.24 | 13 |
| 29 | 0.8 | 1.00 | 250 | 3.25 | 43.44 | 9.33 | 12 |
| 30 | 0.8 | 0.50 | 250 | 1.75 | 40.57 | 6.16 | 17 |
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 7103.94 | 9 | 789.33 | 51.74 | <0.0001 | *** |
| A-碱渣比 | 5881.29 | 1 | 5881.29 | 385.51 | <0.0001 | *** |
| B-温度 | 8.89 | 1 | 8.89 | 0.58 | 0.4628 | — |
| C-时间 | 22.58 | 1 | 22.58 | 1.48 | 0.2517 | — |
| AB | 35.55 | 1 | 35.55 | 2.33 | 0.1579 | — |
| AC | 39.92 | 1 | 39.92 | 2.62 | 0.1368 | — |
| BC | 4.74 | 1 | 4.74 | 0.31 | 0.5895 | — |
| A2 | 770.52 | 1 | 770.52 | 50.51 | <0.0001 | *** |
| B2 | 150.48 | 1 | 150.48 | 9.86 | 0.0105 | * |
| C2 | 560.60 | 1 | 560.60 | 36.75 | 0.0001 | *** |
| 残余 | 152.56 | 10 | 15.26 | — | — | — |
| 失拟 | 63.90 | 5 | 12.78 | 0.72 | 0.6359 | 不显著 |
| 纯误差 | 88.66 | 5 | 17.73 | — | — | — |
| 总和 | 7256.51 | 19 | — | — | — | — |
| R2=0.9790 | ||||||
表4 碱熔活化硅活化率响应面模型回归方程系数显著性检验及方差分析
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 7103.94 | 9 | 789.33 | 51.74 | <0.0001 | *** |
| A-碱渣比 | 5881.29 | 1 | 5881.29 | 385.51 | <0.0001 | *** |
| B-温度 | 8.89 | 1 | 8.89 | 0.58 | 0.4628 | — |
| C-时间 | 22.58 | 1 | 22.58 | 1.48 | 0.2517 | — |
| AB | 35.55 | 1 | 35.55 | 2.33 | 0.1579 | — |
| AC | 39.92 | 1 | 39.92 | 2.62 | 0.1368 | — |
| BC | 4.74 | 1 | 4.74 | 0.31 | 0.5895 | — |
| A2 | 770.52 | 1 | 770.52 | 50.51 | <0.0001 | *** |
| B2 | 150.48 | 1 | 150.48 | 9.86 | 0.0105 | * |
| C2 | 560.60 | 1 | 560.60 | 36.75 | 0.0001 | *** |
| 残余 | 152.56 | 10 | 15.26 | — | — | — |
| 失拟 | 63.90 | 5 | 12.78 | 0.72 | 0.6359 | 不显著 |
| 纯误差 | 88.66 | 5 | 17.73 | — | — | — |
| 总和 | 7256.51 | 19 | — | — | — | — |
| R2=0.9790 | ||||||
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 1627.49 | 9 | 180.83 | 29.00 | <0.0001 | *** |
| A-碱渣比 | 1317.89 | 1 | 1317.89 | 211.37 | <0.0001 | *** |
| B-温度 | 61.96 | 1 | 61.96 | 9.94 | 0.0103 | * |
| C-时间 | 12.34 | 1 | 12.34 | 1.98 | 0.1898 | — |
| AB | 13.96 | 1 | 13.96 | 2.24 | 0.1655 | — |
| AC | 81.68 | 1 | 81.68 | 13.1 | 0.0047 | ** |
| BC | 2.20 | 1 | 2.20 | 0.35 | 0.5657 | — |
| A2 | 0.13 | 1 | 0.13 | 0.02 | 0.8879 | — |
| B2 | 102.19 | 1 | 102.19 | 16.39 | 0.0023 | ** |
| C2 | 52.92 | 1 | 52.92 | 8.49 | 0.0155 | * |
| 残余 | 62.35 | 10 | 6.23 | — | — | — |
| 失拟 | 50.39 | 5 | 10.08 | 4.22 | 0.0702 | 不显著 |
| 纯误差 | 11.95 | 5 | 2.39 | — | — | — |
| 总和 | 1689.84 | 19 | — | — | — | — |
| R2=0.9631 | ||||||
表5 碱熔活化铝活化率响应面模型回归方程系数显著性检验及方差分析
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 1627.49 | 9 | 180.83 | 29.00 | <0.0001 | *** |
| A-碱渣比 | 1317.89 | 1 | 1317.89 | 211.37 | <0.0001 | *** |
| B-温度 | 61.96 | 1 | 61.96 | 9.94 | 0.0103 | * |
| C-时间 | 12.34 | 1 | 12.34 | 1.98 | 0.1898 | — |
| AB | 13.96 | 1 | 13.96 | 2.24 | 0.1655 | — |
| AC | 81.68 | 1 | 81.68 | 13.1 | 0.0047 | ** |
| BC | 2.20 | 1 | 2.20 | 0.35 | 0.5657 | — |
| A2 | 0.13 | 1 | 0.13 | 0.02 | 0.8879 | — |
| B2 | 102.19 | 1 | 102.19 | 16.39 | 0.0023 | ** |
| C2 | 52.92 | 1 | 52.92 | 8.49 | 0.0155 | * |
| 残余 | 62.35 | 10 | 6.23 | — | — | — |
| 失拟 | 50.39 | 5 | 10.08 | 4.22 | 0.0702 | 不显著 |
| 纯误差 | 11.95 | 5 | 2.39 | — | — | — |
| 总和 | 1689.84 | 19 | — | — | — | — |
| R2=0.9631 | ||||||
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 83.43 | 9 | 9.27 | 3.81 | <0.0243 | * |
| A-碱渣比 | 9.00 | 1 | 9.00 | 3.70 | 0.0833 | — |
| B-温度 | 4.00 | 1 | 4.00 | 1.64 | 0.2286 | — |
| C-时间 | 0.25 | 1 | 0.25 | 0.10 | 0.7551 | — |
| AB | 2.00 | 1 | 2.00 | 0.82 | 0.3858 | — |
| AC | 12.50 | 1 | 12.50 | 5.14 | 0.0468 | * |
| BC | 8.00 | 1 | 8.00 | 3.29 | 0.0998 | — |
| A2 | 18.75 | 1 | 18.75 | 7.71 | 0.0196 | * |
| B2 | 24.57 | 1 | 24.57 | 10.11 | 0.0098 | ** |
| C2 | 24.57 | 1 | 24.57 | 10.11 | 0.0098 | ** |
| 残余 | 24.32 | 10 | 2.43 | — | — | — |
| 失拟 | 18.98 | 5 | 3.80 | 3.56 | 0.0949 | 不显著 |
| 纯误差 | 5.33 | 5 | 1.07 | — | — | — |
| 总和 | 107.75 | 19 | — | — | — | — |
| R2=0.7743 | ||||||
表6 碱熔活化硅铝比(摩尔比)响应面模型回归方程系数显著性检验及方差分析
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 83.43 | 9 | 9.27 | 3.81 | <0.0243 | * |
| A-碱渣比 | 9.00 | 1 | 9.00 | 3.70 | 0.0833 | — |
| B-温度 | 4.00 | 1 | 4.00 | 1.64 | 0.2286 | — |
| C-时间 | 0.25 | 1 | 0.25 | 0.10 | 0.7551 | — |
| AB | 2.00 | 1 | 2.00 | 0.82 | 0.3858 | — |
| AC | 12.50 | 1 | 12.50 | 5.14 | 0.0468 | * |
| BC | 8.00 | 1 | 8.00 | 3.29 | 0.0998 | — |
| A2 | 18.75 | 1 | 18.75 | 7.71 | 0.0196 | * |
| B2 | 24.57 | 1 | 24.57 | 10.11 | 0.0098 | ** |
| C2 | 24.57 | 1 | 24.57 | 10.11 | 0.0098 | ** |
| 残余 | 24.32 | 10 | 2.43 | — | — | — |
| 失拟 | 18.98 | 5 | 3.80 | 3.56 | 0.0949 | 不显著 |
| 纯误差 | 5.33 | 5 | 1.07 | — | — | — |
| 总和 | 107.75 | 19 | — | — | — | — |
| R2=0.7743 | ||||||
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 3490.12 | 14 | 249.29 | 14.08 | <0.0001 | *** |
| A-碱渣比 | 2561.63 | 1 | 2561.63 | 144.71 | <0.0001 | *** |
| B-液固比 | 29.15 | 1 | 29.15 | 1.65 | 0.2189 | — |
| C-温度 | 35.07 | 1 | 35.07 | 1.98 | 0.1797 | — |
| D-时间 | 10.98 | 1 | 10.98 | 0.62 | 0.4433 | — |
| AB | 8.75 | 1 | 8.75 | 0.49 | 0.4929 | — |
| AC | 108.73 | 1 | 108.73 | 6.14 | 0.0256 | * |
| AD | 81.68 | 1 | 81.68 | 4.61 | 0.0485 | * |
| BC | 129.45 | 1 | 129.45 | 7.31 | 0.0163 | * |
| BD | 1.18 | 1 | 1.18 | 0.07 | 0.7996 | — |
| CD | 62.77 | 1 | 62.77 | 3.55 | 0.0792 | — |
| A2 | 440.80 | 1 | 440.80 | 24.90 | 0.0002 | *** |
| B2 | 48.71 | 1 | 48.71 | 2.75 | 0.1179 | — |
| C2 | 10.08 | 1 | 10.08 | 0.57 | 0.4621 | — |
| D2 | 28.40 | 1 | 28.40 | 1.60 | 0.2246 | — |
| 残余 | 265.54 | 15 | 17.70 | — | — | — |
| 失拟 | 182.64 | 10 | 18.26 | 1.10 | 0.4871 | 不显著 |
| 纯误差 | 82.90 | 5 | 16.58 | — | — | — |
| 总和 | 3755.66 | 29 | — | — | — | — |
| R2=0.9293 | ||||||
表7 亚熔盐活化硅活化率响应面模型回归方程系数显著性检验及方差分析
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 3490.12 | 14 | 249.29 | 14.08 | <0.0001 | *** |
| A-碱渣比 | 2561.63 | 1 | 2561.63 | 144.71 | <0.0001 | *** |
| B-液固比 | 29.15 | 1 | 29.15 | 1.65 | 0.2189 | — |
| C-温度 | 35.07 | 1 | 35.07 | 1.98 | 0.1797 | — |
| D-时间 | 10.98 | 1 | 10.98 | 0.62 | 0.4433 | — |
| AB | 8.75 | 1 | 8.75 | 0.49 | 0.4929 | — |
| AC | 108.73 | 1 | 108.73 | 6.14 | 0.0256 | * |
| AD | 81.68 | 1 | 81.68 | 4.61 | 0.0485 | * |
| BC | 129.45 | 1 | 129.45 | 7.31 | 0.0163 | * |
| BD | 1.18 | 1 | 1.18 | 0.07 | 0.7996 | — |
| CD | 62.77 | 1 | 62.77 | 3.55 | 0.0792 | — |
| A2 | 440.80 | 1 | 440.80 | 24.90 | 0.0002 | *** |
| B2 | 48.71 | 1 | 48.71 | 2.75 | 0.1179 | — |
| C2 | 10.08 | 1 | 10.08 | 0.57 | 0.4621 | — |
| D2 | 28.40 | 1 | 28.40 | 1.60 | 0.2246 | — |
| 残余 | 265.54 | 15 | 17.70 | — | — | — |
| 失拟 | 182.64 | 10 | 18.26 | 1.10 | 0.4871 | 不显著 |
| 纯误差 | 82.90 | 5 | 16.58 | — | — | — |
| 总和 | 3755.66 | 29 | — | — | — | — |
| R2=0.9293 | ||||||
| 来源 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 1266.36 | 14 | 90.45 | 22.56 | <0.0001 | *** |
| A-碱渣比 | 1052.05 | 1 | 1052.05 | 262.37 | <0.0001 | *** |
| B-液固比 | 71.48 | 1 | 71.48 | 17.83 | 0.0007 | *** |
| C-温度 | 47.94 | 1 | 47.94 | 11.96 | 0.0035 | ** |
| D-时间 | 1.00 | 1 | 1.00 | 0.25 | 0.6247 | — |
| AB | 9.70 | 1 | 9.70 | 2.42 | 0.1406 | — |
| AC | 1.07 | 1 | 1.07 | 0.27 | 0.6128 | — |
| AD | 0.15 | 1 | 0.15 | 0.04 | 0.8482 | — |
| BC | 14.29 | 1 | 14.29 | 3.56 | 0.0786 | — |
| BD | 2.64 | 1 | 2.64 | 0.66 | 0.4298 | — |
| CD | 5.00 | 1 | 5.00 | 1.25 | 0.2819 | — |
| A2 | 9.81 | 1 | 9.81 | 2.45 | 0.1386 | — |
| B2 | 44.90 | 1 | 44.90 | 11.20 | 0.0044 | ** |
| C2 | 10.31 | 1 | 10.31 | 2.57 | 0.1297 | — |
| D2 | 1.38 | 1 | 1.38 | 0.34 | 0.5660 | — |
| 残余 | 60.15 | 15 | 4.01 | — | — | — |
| 失拟 | 33.00 | 10 | 3.30 | 0.61 | 0.7651 | 不显著 |
| 纯误差 | 27.15 | 5 | 5.43 | — | — | — |
| 总和 | 1326.50 | 29 | — | — | — | — |
| R2=0.9547 | ||||||
表8 亚熔盐活化铝活化率响应面模型回归方程系数显著性检验及方差分析
| 来源 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 1266.36 | 14 | 90.45 | 22.56 | <0.0001 | *** |
| A-碱渣比 | 1052.05 | 1 | 1052.05 | 262.37 | <0.0001 | *** |
| B-液固比 | 71.48 | 1 | 71.48 | 17.83 | 0.0007 | *** |
| C-温度 | 47.94 | 1 | 47.94 | 11.96 | 0.0035 | ** |
| D-时间 | 1.00 | 1 | 1.00 | 0.25 | 0.6247 | — |
| AB | 9.70 | 1 | 9.70 | 2.42 | 0.1406 | — |
| AC | 1.07 | 1 | 1.07 | 0.27 | 0.6128 | — |
| AD | 0.15 | 1 | 0.15 | 0.04 | 0.8482 | — |
| BC | 14.29 | 1 | 14.29 | 3.56 | 0.0786 | — |
| BD | 2.64 | 1 | 2.64 | 0.66 | 0.4298 | — |
| CD | 5.00 | 1 | 5.00 | 1.25 | 0.2819 | — |
| A2 | 9.81 | 1 | 9.81 | 2.45 | 0.1386 | — |
| B2 | 44.90 | 1 | 44.90 | 11.20 | 0.0044 | ** |
| C2 | 10.31 | 1 | 10.31 | 2.57 | 0.1297 | — |
| D2 | 1.38 | 1 | 1.38 | 0.34 | 0.5660 | — |
| 残余 | 60.15 | 15 | 4.01 | — | — | — |
| 失拟 | 33.00 | 10 | 3.30 | 0.61 | 0.7651 | 不显著 |
| 纯误差 | 27.15 | 5 | 5.43 | — | — | — |
| 总和 | 1326.50 | 29 | — | — | — | — |
| R2=0.9547 | ||||||
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 1071.53 | 14 | 76.54 | 10.85 | <0.0001 | *** |
| A-碱渣比 | 726.00 | 1 | 726.00 | 102.90 | <0.0001 | *** |
| B-液固比 | 80.67 | 1 | 80.67 | 11.43 | 0.0041 | ** |
| C-温度 | 48.17 | 1 | 48.17 | 6.83 | 0.0196 | * |
| D-时间 | 20.17 | 1 | 20.17 | 2.86 | 0.1116 | — |
| AB | 30.25 | 1 | 30.25 | 4.29 | 0.0561 | — |
| AC | 12.25 | 1 | 12.25 | 1.74 | 0.2074 | — |
| AD | 16.00 | 1 | 16.00 | 2.27 | 0.1529 | — |
| BC | 1.00 | 1 | 1.00 | 0.14 | 0.7118 | — |
| BD | 2.25 | 1 | 2.25 | 0.32 | 0.5806 | — |
| CD | 0.25 | 1 | 0.25 | 0.04 | 0.8532 | — |
| A2 | 48.76 | 1 | 48.76 | 6.91 | 0.0190 | * |
| B2 | 45.76 | 1 | 45.76 | 6.49 | 0.0223 | * |
| C2 | 23.05 | 1 | 23.05 | 3.27 | 0.0908 | — |
| D2 | 0.05 | 1 | 0.05 | 0.01 | 0.9356 | — |
| 残余 | 105.83 | 15 | 7.06 | — | — | — |
| 失拟 | 63.00 | 10 | 6.30 | 0.74 | 0.6832 | 不显著 |
| 纯误差 | 42.83 | 5 | 8.57 | — | — | — |
| 总和 | 1177.37 | 29 | — | — | — | — |
| R2=0.9101 | ||||||
表9 亚熔盐活化硅铝比响应面模型回归方程系数显著性检验及方差分析
| 项目 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 1071.53 | 14 | 76.54 | 10.85 | <0.0001 | *** |
| A-碱渣比 | 726.00 | 1 | 726.00 | 102.90 | <0.0001 | *** |
| B-液固比 | 80.67 | 1 | 80.67 | 11.43 | 0.0041 | ** |
| C-温度 | 48.17 | 1 | 48.17 | 6.83 | 0.0196 | * |
| D-时间 | 20.17 | 1 | 20.17 | 2.86 | 0.1116 | — |
| AB | 30.25 | 1 | 30.25 | 4.29 | 0.0561 | — |
| AC | 12.25 | 1 | 12.25 | 1.74 | 0.2074 | — |
| AD | 16.00 | 1 | 16.00 | 2.27 | 0.1529 | — |
| BC | 1.00 | 1 | 1.00 | 0.14 | 0.7118 | — |
| BD | 2.25 | 1 | 2.25 | 0.32 | 0.5806 | — |
| CD | 0.25 | 1 | 0.25 | 0.04 | 0.8532 | — |
| A2 | 48.76 | 1 | 48.76 | 6.91 | 0.0190 | * |
| B2 | 45.76 | 1 | 45.76 | 6.49 | 0.0223 | * |
| C2 | 23.05 | 1 | 23.05 | 3.27 | 0.0908 | — |
| D2 | 0.05 | 1 | 0.05 | 0.01 | 0.9356 | — |
| 残余 | 105.83 | 15 | 7.06 | — | — | — |
| 失拟 | 63.00 | 10 | 6.30 | 0.74 | 0.6832 | 不显著 |
| 纯误差 | 42.83 | 5 | 8.57 | — | — | — |
| 总和 | 1177.37 | 29 | — | — | — | — |
| R2=0.9101 | ||||||
| 样品 | 比表面积/m2·g-1 | 平均孔径/nm | 孔容/cm3·g-1 |
|---|---|---|---|
| CS | 7.89 | 6.23 | 0.01 |
| SMS-1-0.5-200-1 | 5.82 | 24.38 | 0.02 |
| SMS-1-0.5-200-2 | 8.19 | 17.14 | 0.03 |
| SMS-1-0.5-200-6 | 6.64 | 20.07 | 0.02 |
| SMS-1-0.5-200-9 | 7.68 | 23.63 | 0.03 |
表10 粗渣在亚熔盐介质中不同活化时间活化产物的孔道结构特征
| 样品 | 比表面积/m2·g-1 | 平均孔径/nm | 孔容/cm3·g-1 |
|---|---|---|---|
| CS | 7.89 | 6.23 | 0.01 |
| SMS-1-0.5-200-1 | 5.82 | 24.38 | 0.02 |
| SMS-1-0.5-200-2 | 8.19 | 17.14 | 0.03 |
| SMS-1-0.5-200-6 | 6.64 | 20.07 | 0.02 |
| SMS-1-0.5-200-9 | 7.68 | 23.63 | 0.03 |
| [1] | LUO Feng, JIANG Yinshan, WEI Cundi. Potential of decarbonized coal gasification residues as the mineral admixture of cement-based material[J]. Construction and Building Materials, 2021, 269: 121259. |
| [2] | XIANG Yulin, XIANG Yuxiu, WANG Lipeng, et al. Effects of sewage sludge modified by coal gasification slag and electron beam irradiation on the growth of Alhagi sparsifolia Shap. and transfer of heavy metals[J]. Environmental Science and Pollution Research, 2018, 25(12): 11636-11645. |
| [3] | NIU Yanjie, CHEN Liqing, GUO Sixi, et al. Porous carbon/minerals interwoven particle electrodes co-constructed by residual carbon and ash from coal gasification fine slag and its synergistic electrocatalytic mechanism[J]. Fuel, 2024, 358: 130139. |
| [4] | DAI Gaofeng, ZHENG Shijie, WANG Xuebin, et al. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. Journal of Environmental Management, 2020, 271: 111009. |
| [5] | YUAN Ning, TAN Kaiqi, ZHANG Xinling, et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag[J]. Chemosphere, 2022, 303: 134839. |
| [6] | WU Feng, LI Hui, YANG Kang. Effects of mechanical activation on physical and chemical characteristics of coal-gasification slag[J]. Coatings, 2021, 11(8): 902. |
| [7] | QU Jiangshan, ZHANG Jianbo, LI Huiquan, et al. A high value utilization process for coal gasification slag: Preparation of high modulus sodium silicate by mechano-chemical synergistic activation[J]. Science of the Total Environment, 2021, 801: 149761. |
| [8] | ZHANG Jiupeng, ZUO Jing, AI Weidong, et al. Preparation of a new high-efficiency resin deodorant from coal gasification fine slag and its application in the removal of volatile organic compounds in polypropylene composites[J]. Journal of Hazardous Materials, 2020, 384: 121347. |
| [9] | 刘海燕, 孙鑫艳, 郑涛, 等. 不同活化方法对天然硅铝矿物活化及分子筛合成效果的影响[J]. 燃料化学学报, 2020, 48(3): 328-337. |
| LIU Haiyan, SUN Xinyan, ZHENG Tao, et al. Effects of activation methods on the activation of natural aluminosilicate minerals and zeolite synthesis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 328-337. | |
| [10] | YANG Delong, YU Mingming, MUBULA Yusufujiang, et al. Recovering rare earths, lithium and fluorine from rare earth molten salt electrolytic slag using sub-molten salt method[J]. Journal of Rare Earths, 2024, 42(9): 1774-1781. |
| [11] | SUN Hongqian, SONG Jing, SUN Shuai, et al. Decomposition kinetics of zircon sand in NaOH sub-molten salt solution[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(9): 1948-1955. |
| [12] | LI Sun-Chol, KANG Chung-Su, KIM Sok-Chol, et al. The extraction of Ta, Nb and rare earths from fergusonite by using KOH sub-molten salt leaching[J]. Hydrometallurgy, 2021, 201: 105358. |
| [13] | LIU Haiyan, SHEN Tong, WANG Wanwan, et al. From natural aluminosilicate minerals to zeolites: Synthesis of ZSM-5 from rectorites activated via different methods[J]. Applied Clay Science, 2015, 115: 201-211. |
| [14] | CHEN Xiaoling, WANG Ying, WANG Chan, et al. Synthesis of NaA zeolite via the mesoscale reorganization of submolten salt depolymerized Kaolin: A mechanistic study[J]. Chemical Engineering Journal, 2023, 454: 140243. |
| [15] | ZONG Yanbing, ZHAO Chengyu, CHEN Wenhui, et al. Preparation of hydro-sodalite from fly ash using a hydrothermal method with a submolten salt system and study of the phase transition process[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(1): 55-62. |
| [16] | 齐朝博. 含乙烯、乙炔的混合气体火焰辐射计算模型及其应用[D]. 北京: 清华大学, 2018. |
| QI Chaobo. Gas radiation model and its application on gas flames with C2H2 and C2H4 [D]. Beijing: Tsinghua University, 2018. | |
| [17] | 刘伟韬, 吴海凤, 申建军. 基于RSM的超细水泥注浆材料配比及性能优化模型[J]. 煤炭科学技术, 2024, 52(8): 146-158. |
| LIU Weitao, WU Haifeng, SHEN Jianjun. Based on Box-Behnken method superfine cement grouting material ratio and performance optimization model[J]. Coal Science and Technology, 2024, 52(8): 146-158. | |
| [18] | GU Jichao, LI Wenqi, CAI Yongzhou. A hybrid meta-model based global optimization method for expensive problems[J]. Computers & Industrial Engineering, 2019, 136: 421-428. |
| [19] | 李灏, 孙昱楠, 李健, 等. 陈腐垃圾与原生垃圾的共气化特性[J]. 化工进展, 2025, 44(1): 525-537. |
| LI Hao, SUN Yunan, LI Jian, et al. Co-gasification characteristics of excavated waste and municipal solid waste blends[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 525-537. | |
| [20] | WANG Guodong, SHAO Mengying, LI Jing, et al. Bayesian analysis of designed reliability improvement experiments with application to adaptive termination[J]. Quality and Reliability Engineering International, 2024, 40(1): 57-70. |
| [21] | TAN Miaomiao, PAN Dahai, CHEN Shuwei, et al. Synthesis of coal-fly-ash-based ordered mesoporous materials and their adsorption application[J]. Materials, 2023, 16(7): 2868. |
| [22] | SASAKI Koki, HERNANDEZ GAITAN Jose A, OKUE Tsuyoshi, et al. Amorphous aluminosilicate nanosheets as universal precursors for the synthesis of diverse zeolite nanosheets for polymer-cracking reactions[J]. Angewandte Chemie International Edition, 2022, 61(46): e202213773. |
| [23] | MØLLER Kristoffer H, DEBOST Maxime, LAKISS Louwanda, et al. Interzeolite conversion of a micronsized FAU to a nanosized CHA zeolite free of organic structure directing agent with a high CO2 capacity[J]. RSC Advances, 2020, 10(70): 42953-42959. |
| [24] | 马晶, 马玉龙, 朱莉, 等. 煤气化渣结构组成及其主要金属元素赋存形态[J]. 化工进展, 2024, 43(10): 5857-5866. |
| MA Jing, MA Yulong, ZHU Li, et al. Structure composition of coal gasification slag and speciation of main metals in coal gasification slag[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5857-5866. | |
| [25] | Yosuke ONO, MASUNAGA Takuro, SODEYAMA Ken-ichi. In situ crystallization of CHA/FAU zeolites on volcanic stone in the absence of organic agents[J]. Microporous and Mesoporous Materials, 2021, 328: 111500. |
| [26] | ZHANG Juan, CHU Yueying, LIU Xiaolong, et al. Interzeolite transformation from FAU to CHA and MFI zeolites monitored by UV Raman spectroscopy[J]. Chinese Journal of Catalysis, 2019, 40(12): 1854-1859. |
| [27] | ZONES Stacey I, LEW Christopher M, XIE Dan, et al. Studies on the use of faujasite as a reagent to deliver silica and alumina in building new zeolite structures with organo-cations[J]. Microporous and Mesoporous Materials, 2020, 300: 110162. |
| [1] | 张嘉政, 毛岩鹏, 魏光朔, 逄栋杰, 徐剑, 董婧祎, 王旭江, 李敬伟, 王文龙. 煤气化渣替代水泥窑燃料的协同处理工艺[J]. 化工进展, 2025, 44(7): 4202-4211. |
| [2] | 任鹏锟, 仲兆平, 张小霓, 杨宇轩, 冉真真. 污泥-木屑基活性炭的制备及其对苯系VOCs的吸附性能[J]. 化工进展, 2025, 44(6): 3031-3040. |
| [3] | 周鹏辉, 曾琳, 代黎, 冯小波, 倪笛. 响应面法和熵权法对离心风机的多目标性能优化[J]. 化工进展, 2025, 44(6): 3271-3279. |
| [4] | 成韵, 周小力, 曹志强, 周杰, 董维亮, 姜岷. 基于LCA的废弃PET酶法解聚和碱性水解过程环境影响对比分析[J]. 化工进展, 2025, 44(5): 2788-2797. |
| [5] | 贺静, 郑娜, 徐丽, 沈素丹, 浦群, 房尔园, 介素云. 原子力显微镜红外光谱和化学成像的技术与应用[J]. 化工进展, 2025, 44(4): 2156-2171. |
| [6] | 牛经纬, 陈孝杨, 张健, 周育智, 陈敏. 活化过硫酸盐降解土壤典型环境内分泌干扰物[J]. 化工进展, 2025, 44(4): 2285-2296. |
| [7] | 宋坤莉, 肖雷, 马丹丹, 肖朋, 杨莎莎, 石建稳. 超低温氨气选择性脱硝催化剂的研究进展[J]. 化工进展, 2025, 44(4): 2028-2035. |
| [8] | 高文芳, 郭天玥, 高放, 于曼, 崔晗, 李华杰, 阎文艺, 吕龙义, 孙峙. 全球典型原材料资源关键性评价方法研究进展[J]. 化工进展, 2025, 44(3): 1619-1631. |
| [9] | 景凌云, 刘莎莎, 张泽强, 刘光龙, 蒋莉, 孙志丽, 胡叶强, 郝鹏波, 郑银琴, 杨辉. ZnO促进多级孔ZIF-8衍生Co-Ni-N-C活化PMS降解水中左氧氟沙星[J]. 化工进展, 2025, 44(3): 1683-1694. |
| [10] | 张伊, 么秋香, 孙鸣. 天然斜发沸石基方沸石及其改性对Pb2+的吸附性能[J]. 化工进展, 2025, 44(3): 1726-1738. |
| [11] | 孙雅娟, 段思宇, 张宏, 周冬冬, 路广军, 马志斌. 化学外加剂对固废基胶凝材料性能及水化行为的影响[J]. 化工进展, 2025, 44(3): 1739-1748. |
| [12] | 王奇, 张乾, 杨凯, 高晨明, 孙岳鹏, 黄伟. 煤气化渣提炭分质用于橡胶补强填充料[J]. 化工进展, 2025, 44(3): 1749-1757. |
| [13] | 贾亦静, 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松. CO2加氢制低碳烯烃Fe基催化剂研究进展[J]. 化工进展, 2025, 44(2): 820-833. |
| [14] | 王子健, 李佳涵, 李舒婷, 闫世娟, 孙巾茹, 童燕兵, 郑佳硕, 彭云雷, 宋昭峥, 柯明. 片层丝光沸石的合成与应用研究进展[J]. 化工进展, 2025, 44(2): 847-855. |
| [15] | 杨群, 李红艳, 张峰, 毛立波, 崔佳丽, 董颖虹, 郭紫瑞. 钴氮共掺杂废菌棒生物炭活化PMS去除水中加替沙星[J]. 化工进展, 2025, 44(2): 1088-1099. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |