化工进展 ›› 2025, Vol. 44 ›› Issue (2): 847-855.DOI: 10.16085/j.issn.1000-6613.2024-0268
王子健1(), 李佳涵1, 李舒婷1, 闫世娟1, 孙巾茹1, 童燕兵1, 郑佳硕2, 彭云雷1(
), 宋昭峥1, 柯明1(
)
收稿日期:
2024-02-05
修回日期:
2024-03-25
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
彭云雷,柯明
作者简介:
王子健(1995—),男,博士研究生,研究方向为工艺设计优化和分子筛合成应用。E-mail:zijianwang1995@163.com。
基金资助:
WANG Zijian1(), LI Jiahan1, LI Shuting1, YAN Shijuan1, SUN Jinru1, TONG Yanbing1, ZHENG Jiashuo2, PENG Yunlei1(
), SONG Zhaozheng1, KE Ming1(
)
Received:
2024-02-05
Revised:
2024-03-25
Online:
2025-02-25
Published:
2025-03-10
Contact:
PENG Yunlei, KE Ming
摘要:
片层丝光沸石在特定取向上具有更短的长度,表现出优异的催化性能成为研究热点。本文综述了目前报道的片层丝光沸石原位合成方法,包括单模板法、双模板法以及调整合成条件等,对其在羰基化、环化以及MTO催化反应进行了具体分析,并指出双模板法相比于单模板法从成本和合成方法角度更具优势,结合理论计算对模板剂的定向设计和机理探讨,以合成特定取向且介孔性良好的丝光沸石为模板法的发展方向。合成因素的调整对取向长度的控制较为有效,但一般仍需与特定模板的协同。在应用领域,沿b轴和c轴取向的片状丝光沸石在特定反应中表现出更好的催化活性。从宏观上,建立取向长度比例与特定反应之间的关系;从微观上,结合理论计算和先进表征技术研究模板剂与酸分布和催化反应的相关性,将是片层丝光沸石的研究重点。
中图分类号:
王子健, 李佳涵, 李舒婷, 闫世娟, 孙巾茹, 童燕兵, 郑佳硕, 彭云雷, 宋昭峥, 柯明. 片层丝光沸石的合成与应用研究进展[J]. 化工进展, 2025, 44(2): 847-855.
WANG Zijian, LI Jiahan, LI Shuting, YAN Shijuan, SUN Jinru, TONG Yanbing, ZHENG Jiashuo, PENG Yunlei, SONG Zhaozheng, KE Ming. Research progress in the synthesis and application of lamellar mordenite[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 847-855.
模板剂 | 厚度/nm | 短轴取向 | 参考文献 |
---|---|---|---|
C16H33N+(CH3)2C2H4N(CH3)2Br | 10~40 | c 轴 | [ |
C18H37N+(CH3)(C2H4)2C3H6(C2H4)2(CH3)N+C18H37Br2 | — | c 轴 | [ |
C16H33N+(CH3)2C4H8N+(CH3)2苄胺 | 约10 | b 轴 | [ |
C12H25N+(CH3)2C2H4N+(CH3)2C12H25Br2 | 约30 | 与c轴垂直 | [ |
C18H37N+(CH3)2C6H12N+(CH3)2C18H37 | 10~20 | — | [ |
C16H33N+(CH3C6H4SO3)(CH3)3 | 约50 | — | [ |
表1 单模板剂合成片状丝光沸石文献
模板剂 | 厚度/nm | 短轴取向 | 参考文献 |
---|---|---|---|
C16H33N+(CH3)2C2H4N(CH3)2Br | 10~40 | c 轴 | [ |
C18H37N+(CH3)(C2H4)2C3H6(C2H4)2(CH3)N+C18H37Br2 | — | c 轴 | [ |
C16H33N+(CH3)2C4H8N+(CH3)2苄胺 | 约10 | b 轴 | [ |
C12H25N+(CH3)2C2H4N+(CH3)2C12H25Br2 | 约30 | 与c轴垂直 | [ |
C18H37N+(CH3)2C6H12N+(CH3)2C18H37 | 10~20 | — | [ |
C16H33N+(CH3C6H4SO3)(CH3)3 | 约50 | — | [ |
1 | SMITH Joseph V. Minerals and rocks 18. natural zeolites[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2502. |
2 | BARRER R M. 435. Syntheses and reactions of mordenite[J]. Journal of the Chemical Society (Resumed), 1948: 2158. |
3 | 祁晓岚, 刘希尧. 丝光沸石合成与表征的研究进展[J]. 分子催化, 2002, 16(4): 312-319. |
QI Xiaolan, LIU Xiyao. Research progress in synthesis and characterization of mordenite[J]. Journal of Molecular Catalysis (China), 2002, 16(4): 312-319. | |
4 | XIONG Zhiping, QI Guodong, ZHAN Ensheng, et al. Experimental identification of the active sites over a plate-like mordenite for the carbonylation of dimethyl ether[J]. Chem, 2023, 9(1): 76-92. |
5 | 韩海波, 王有和, 李康, 等. 超声波碱处理改性对丝光沸石结构、酸性质及其催化性能的影响[J]. 化工学报, 2018, 69(7): 3001-3008. |
HAN Haibo, WANG Youhe, LI Kang, et al. Effect of ultrasonic alkali treatment on structural, acidic properties and performance of MOR catalyst[J]. CIESC Journal, 2018, 69(7): 3001-3008. | |
6 | 祁晓岚, 陈雪梅, 孔德金, 等. 介孔丝光沸石的制备及其对重芳烃转化反应的催化性能[J]. 催化学报, 2009, 30(12): 1197-1202. |
QI Xiaolan, CHEN Xuemei, KONG Dejin, et al. Preparation of mesoporous mordenite and its catalytic performance for transformation of heavy aromatics[J]. Chinese Journal of Catalysis, 2009, 30(12): 1197-1202. | |
7 | XU Le, SUN Junliang. Recent advances in the synthesis and application of two-dimensional zeolites[J]. Advanced Energy Materials, 2016, 6(17): 1600441. |
8 | MA Meng, HUANG Xiumin, ZHAN Ensheng, et al. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(19): 8887-8891. |
9 | ZHANG Hongxia, ZHANG Hongbin, WANG Peicheng, et al. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion[J]. RSC Advances, 2016, 6(53): 47623-47631. |
10 | ZHANG Lei, VAN LAAK Adri N C, DE JONGH Petra E, et al. Synthesis of large mordenite crystals with different aspect ratios[J]. Microporous and Mesoporous Materials, 2009, 126(1/2): 115-124. |
11 | CHOI Jungkyu, GHOSH Shubhajit, LAI Zhiping, et al. Uniformly a-oriented MFI zeolite films by secondary growth[J]. Angewandte Chemie International Edition, 2006, 45(7): 1154-1158. |
12 | SATO Kiminori, SUGIMOTO Kazunori, KYOTANI Tomohiro, et al. Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution[J]. Journal of Membrane Science, 2011, 385: 20-29. |
13 | TANAKA Satoshi, BABA Shoko, WATANABE Toshinari, et al. Preparation and gas permeance of c-axis oriented zeolite membrane using ion-exchanged mordenite zeolite crystals oriented in magnetic field[J]. Journal of the European Ceramic Society, 2020, 40(15): 5984-5990. |
14 | 邵秀丽, 王驷骐, 张轩, 等. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666. |
SHAO Xiuli, WANG Siqi, ZHANG Xuan, et al. Fabrication and application of MFI zeolite nanosheets[J]. Progress in Chemistry, 2022, 34(12): 2651-2666. | |
15 | 郝青青, 赵东阳, 胡敏, 等. 一种柱撑层状丝光沸石及其制备方法: CN106517239B[P]. 2018-05-25. |
HAO Qingqing, ZHAO Dongyang, HU Min, et al. Pillared layered mordenite, and preparation method thereof: CN106517239B[P]. 2018-05-25. | |
16 | YOCUPICIO-GAXIOLA Rosario I, PETRANOVSKII Vitalii, Joel ANTÚNEZ-GARCÍA, et al. One-pot synthesis of lamellar mordenite and ZSM-5 zeolites and subsequent pillaring by amorphous SiO2 [J]. Applied Nanoscience, 2019, 9(4):557-565. |
17 | NA Kyungsu, CHOI Minkee, PARK Woojin, et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness[J]. Journal of the American Chemical Society, 2010, 132(12): 4169-4177. |
18 | DI IORIO John R, LI Sichi, JONES Casey B, et al. Cooperative and competitive occlusion of organic and inorganic structure-directing agents within chabazite zeolites influences their aluminum arrangement[J]. Journal of the American Chemical Society, 2020, 142(10): 4807-4819. |
19 | LIU Wenrong, WANG Yaquan, BU Lingzhen, et al. Wheel-like mordenite nanoassemblies with shortened channel lengths for improved catalytic performance in dimethyl ether carbonylation[J]. ACS Applied Nano Materials, 2023, 6(19): 18005-18015. |
20 | JAIN Rishabh, MALLETTE Adam J, RIMER Jeffrey D. Controlling nucleation pathways in zeolite crystallization: Seeding conceptual methodologies for advanced materials design[J]. Journal of the American Chemical Society, 2021, 143(51): 21446-21460. |
21 | DEVOSJulien, SHAH MeeraA, DUSSELIERMichiel. On the key role of aluminium and other heteroatoms during interzeolite conversion synthesis[J]. RSC Advances, 2021, 11(42): 26188-26210. |
22 | SWADDLE Thomas W. Silicate complexes of aluminum(Ⅲ) in aqueous systems[J]. Coordination Chemistry Reviews, 2001, 219: 665-686. |
23 | MLEKODAJ Kinga, BERNAUER Milan, OLSZOWKA Joanna E, et al. Synthesis of the zeolites from SBU: An SSZ-13 study[J]. Chemistry of Materials, 2021, 33(5): 1781-1788. |
24 | LAI Zhiping, BONILLA Griselda, DIAZ Isabel, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
25 | CHOI Minkee, NA Kyungsu, KIM Jeongnam, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
26 | 申文杰, 马猛, 黄秀敏, 等. 片状纳米丝光沸石分子筛的合成方法及丝光沸石分子筛: CN107963637B[P]. 2020-06-26. |
SHEN Wenjie, MA Meng, HUANG Xiumin, et al. Flaky nano-mordenite molecular sieve synthesis method and mordenite molecular sieve: CN107963637B[P]. 2020-06-26. | |
27 | SHVETS Oleksiy V, KONYSHEVA Kateryna M, SHAMZHY Mariya V, et al. Mordenite nanorods and nanosheets prepared in presence of gemini type surfactants[J]. Catalysis Today, 2019, 324: 115-122. |
28 | LU Kun, HUANG Ju, REN Li, et al. High ethylene selectivity in methanol-to-olefin (MTO) reaction over MOR-zeolite nanosheets[J]. Angewandte Chemie International Edition, 2020, 59(15): 6258-6262. |
29 | YUAN Yangyang, WANG Linying, LIU Hongchao, et al. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chinese Journal of Catalysis, 2015, 36(11): 1910-1919. |
30 | Changbum JO, JUNG Jinhwan, SHIN Hye Sun, et al. Capping with multivalent surfactants for zeolite nanocrystal synthesis[J]. Angewandte Chemie International Edition, 2013, 52(38): 10014-10017. |
31 | 张坤, 徐浪浪, 袁恩辉, 等. 一种层状纳米丝光沸石分子筛的制备方法: CN102718231A[P]. 2012-10-10. |
ZHANG Kun, XU Langlang, YUAN Enhui, et al. Preparation method of layered nano-mordenite molecular sieve: CN102718231A[P]. 2012-10-10. | |
32 | 张原, 朱芸, 傅雯倩, 等. 丝光沸石纳米片负载Pd催化剂实现2-苯基吡啶的双酰基化[J]. 精细化工, 2023, 40(10): 2312-2320. |
ZHANG Yuan, ZHU Yun, FU Wenqian, et al. Mordenite zeolite nanosheets supported palladium catalyst for diacylation of 2-phenylpyridine[J]. Fine Chemicals, 2023, 40(10): 2312-2320. | |
33 | LEWIS Dewi W, WILLOCK David J, CATLOW C Richard A, et al. De novo design of structure-directing agents for the synthesis of microporous solids[J]. Nature, 1996, 382: 604-606. |
34 | KUMAR Manjesh, BERKSON Zachariah J, John CLARK R, et al. Crystallization of mordenite platelets using cooperative organic structure-directing agents[J]. Journal of the American Chemical Society, 2019, 141(51): 20155-20165. |
35 | LIU Min, JIA Wenzhi, LI Junhui, et al. Catalytic properties of hierarchical mordenite nanosheets synthesized by self-assembly between subnanocrystals and organic templates[J]. Catalysis Letters, 2016, 146(1): 249-254. |
36 | LIU Mengnan, LI Yuzhao, XIE Zhixia, et al. Organosilane surfactant-directed synthesis of hierarchical mordenite with enhanced catalytic performance in the alkylation of benzene with 1-dodecene[J]. New Journal of Chemistry, 2020, 44(38): 16638-16644. |
37 | NARAYANAN S, TAMIZHDURAI P, MANGESH V L, et al. Recent advances in the synthesis and applications of mordenite zeolite-review[J]. RSC Advances, 2020, 11(1): 250-267. |
38 | 吴鹏, 阚秋斌, 许宁, 等. HMI体系下系列沸石分子筛的动态合成与表征[J]. 化学学报, 2003, 61(8): 1202-1207. |
WU Peng, KAN Qiubin, XU Ning, et al. Dynamic synthesis and characterization of various zeolites in HMI system[J]. Acta Chimica Sinica, 2003, 61(8): 1202-1207. | |
39 | 任思帅, 崔岩, 李发永, 等. 不同形貌丝光沸石的合成及烷基化性能[J]. 硅酸盐学报, 2020, 48(12): 1976-1981. |
REN Sishuai, CUI Yan, LI Fayong, et al. Synthesis and alkylation properties of mordenites with different morphologies[J]. Journal of the Chinese Ceramic Society, 2020, 48(12): 1976-1981. | |
40 | LIU Mengnan, XIE Zhixia, LUO Qunxing, et al. Synthesis of nanosized mordenite with enhanced catalytic performance in the alkylation of benzene with benzyl alcohol[J]. Industrial & Engineering Chemistry Research, 2022, 61(2): 1078-1088. |
41 | 常玉, 张安峰, 郭新闻, 等. 丝光沸石的形貌调控及其烷基化性能研究[J]. 现代化工, 2023, 43(S2): 219-224. |
CHANG Yu, ZHANG Anfeng, GUO Xinwen, et al. Morphology control of mordenite and its alkylation performance[J]. Modern Chemical Industry, 2023, 43(S2): 219-224. | |
42 | KIM Jaeheon, Changbum JO, LEE Seungjun, et al. Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis[J]. Journal of Materials Chemistry A, 2014, 2(30): 11905-11912. |
43 | SHAN Zhichao, WANG Hong, MENG Xiangju, et al. Designed synthesis of TS-1 crystals with controllable b-oriented length[J]. Chemical Communications, 2011, 47(3): 1048-1050. |
44 | WANG Xiaosheng, LI Ranjia, YU Changchun, et al. Study on the reconstruction in the crystallization process of mordenite[J]. Microporous and Mesoporous Materials, 2021, 311: 110665. |
45 | MCINTOSH Grant J. Theoretical investigations into the nucleation of silica growth in basic solution part Ⅱ—Derivation and benchmarking of a first principles kinetic model of solution chemistry[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17496-17509. |
46 | FENG Guodong, CHENG Peng, YAN Wenfu, et al. Accelerated crystallization of zeolites via hydroxyl free radicals[J]. Science, 2016, 351(6278): 1188-1191. |
47 | WANG Jing, CHENG Xiaowei, GUO Juan, et al. High-silica MOR type zeolite self-transformed from dry aluminosilicate gel in OSAs-free and fluoride-free reactant system[J]. Microporous and Mesoporous Materials, 2006, 96(1/2/3): 307-313. |
48 | ZHANG Ling, XIE Sujuan, XIN Wenjie, et al. Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis[J]. Materials Research Bulletin, 2011, 46(6): 894-900. |
49 | 武建兵. 一种薄片状丝光沸石分子筛的合成方法: CN114229864B[P]. 2023-07-18. |
WU Jianbing. Synthetic method of lamellar mordenite molecular sieve: CN114229864B[P]. 2023-07-18. | |
50 | 王子健, 柯明, 李佳涵, 等. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
WANG Zijian, KE Ming, LI Jiahan, et al. Progress in preparation and application of short b-axis ZSM-5 molecular sieve[J]. CIESC Journal, 2023, 74(4): 1457-1473. | |
51 | ZHANG Fen, LIU Yan, SUN Qi, et al. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10-20 nm thickness and partially blocked acidic sites[J]. Chemical Communications, 2017, 53(36): 4942-4945. |
52 | BHAN Aditya, ALLIAN Ayman D, SUNLEY Glenn J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924. |
53 | HE Ting, LIU Xianchun, XU Shutao, et al. Role of 12-ring channels of mordenite in DME carbonylation investigated by solid-state NMR[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22526-22531. |
54 | LIU Rongsheng, FAN Benhan, ZHANG Wenna, et al. Inside cover: Increasing the number of aluminum atoms in T3 sites of a mordenite zeolite by low-pressure SiCl4 treatment to catalyze dimethyl ether carbonylation (angew. chem. int. Ed. 18/2022)[J]. Angewandte Chemie International Edition, 2022, 61(18): e202204179. |
55 | LI Ying, LI Zehua, HUANG Shouying, et al. Morphology-dependent catalytic performance of mordenite in carbonylation of dimethyl ether: Enhanced activity with high c/b ratio[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24000-24005. |
56 | HAREL Dipak, SCHEPMANN Dirk, PRINZ Helge, et al. Natural product derived antiprotozoal agents: Synthesis, biological evaluation, and structure activity relationships of novel chromene and chromane derivatives[J]. Journal of Medicinal Chemistry, 2013, 56(18): 7442-7448. |
57 | 朱伟平. 甲醇制烯烃技术开发进展[J]. 现代化工, 2022, 42(4): 82-86, 92. |
ZHU Weiping. Technological development advances in methanol to olefins process[J]. Modern Chemical Industry, 2022, 42(4): 82-86, 92. | |
58 | WU Xinqiang, XU Shutao, WEI Yingxu, et al. Evolution of C—C bond formation in the methanol-to-olefins process: From direct coupling to autocatalysis[J]. ACS Catalysis, 2018, 8(8): 7356-7361. |
59 | HEMELSOET Karen, VAN DER MYNSBRUGGE Jeroen, DE WISPELAERE Kristof, et al. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment[J]. ChemPhysChem, 2013, 14(8): 1526-1545. |
60 | SHANGZhengyun, CHENYong, ZHANGLejian, et al. Constructing single-crystalline hierarchical plate-like ZSM-5 zeolites with short b-axis length for catalyzing MTO reactions[J]. Inorganic Chemistry Frontiers, 2022, 9(7): 1456-1466. |
[1] | 边宇, 张百超, 郑红. 多级孔COFs材料的设计、合成及应用[J]. 化工进展, 2022, 41(9): 4866-4883. |
[2] | 刘聿嘉,夏长久,林民,朱斌,彭欣欣,罗一斌,舒兴田. 锡硅分子筛:新型杂原子分子筛催化材料[J]. 化工进展, 2020, 39(2): 605-615. |
[3] | 詹世平,万泽韬,王景昌,阜金秋,赵启成. 生物医用材料聚乳酸的合成及其改性研究进展[J]. 化工进展, 2020, 39(1): 199-205. |
[4] | 徐煜轩, 杨继年, 聂士斌. 功能化层状硅酸镍在磁、电及催化领域的应用[J]. 化工进展, 2019, 38(06): 2835-2846. |
[5] | 王晔晨, 全微雷, 张金敏, 沈俊海, 李良超. 磁性聚合物微球的制备及其应用研究进展[J]. 化工进展, 2017, 36(08): 2971-2977. |
[6] | 高雪, 孙靖, 刘晓, 王华, 韩金玉. 碳量子点的合成、性质及应用[J]. 化工进展, 2017, 36(05): 1734-1742. |
[7] | 徐冬梅, 刘建, 高军, 刘迪, 刘晓伟. 金纳米棒的合成、光学特性、修饰及其在生物学中的应用[J]. 化工进展, 2016, 35(07): 2121-2129. |
[8] | 赵波,吕剑. (顺)-1,1,1,4,4,4-六氟-2-丁烯的合成研究进展[J]. 化工进展, 2014, 33(01): 193-197. |
[9] | 黄一波1,王 亮2. (2S,3R)-2-羟基-3-氨基-4-苯基丁酸的合成方法进展[J]. 化工进展, 2013, 32(05): 1127-1132. |
[10] | 董 群,于 婷,仇登可,丰 铭,孟 欣. 介孔过渡金属氧化物的合成研究进展[J]. 化工进展, 2012, 31(02 ): 355-359. |
[11] | 王红亮1,史慧贤2,姜申德1. 羟基酪醇的研究进展 [J]. 化工进展, 2010, 29(6): 1133-. |
[12] | 叶永清,肖新颜,万彩霞. 锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2研究进展 [J]. 化工进展, 2009, 28(7): 1192-. |
[13] | 吴 彬,罗运军,张政委. 超支化聚氨酯的现状及发展动态 [J]. 化工进展, 2009, 28(3): 418-. |
[14] | 徐 浩,延 卫,冯江涛. 聚苯胺的合成与聚合机理研究进展 [J]. 化工进展, 2008, 27(10): 1561-. |
[15] | 于 杰;马 波;张志智;凌凤香;张喜文. 复合分子筛的合成及表征研究进展 [J]. 化工进展, 2007, 26(11): 1554-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 55
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |