化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2856-2869.DOI: 10.16085/j.issn.1000-6613.2024-1800

• CO2减排利用 • 上一篇    

电催化二氧化碳和硝酸根共还原合成尿素研究进展

范晓娅1(), 赵镇1, 彭强1,2()   

  1. 1.成都理工大学材料与化学化工学院,四川 成都 610059
    2.四川大学化学工程学院,四川 成都 610065
  • 收稿日期:2024-11-06 修回日期:2025-02-08 出版日期:2025-05-25 发布日期:2025-05-20
  • 通讯作者: 彭强
  • 作者简介:范晓娅(1994—),女,博士,讲师,研究方向为电催化小分子合成。E-mail:xyfan@cdut.edu.cn
  • 基金资助:
    国家自然科学基金(22379101);四川省自然科学基金(2025ZNSFSC0897)

Review on electrocatalytic co-reduction of carbon dioxide and nitrate for urea synthesis

FAN Xiaoya1(), ZHAO Zhen1, PENG Qiang1,2()   

  1. 1.College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
    2.School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2024-11-06 Revised:2025-02-08 Online:2025-05-25 Published:2025-05-20
  • Contact: PENG Qiang

摘要:

尿素是一种关键的农业氮肥,是作物生长不可或缺的原料。电催化CO2和NO3-共还原的C-N偶联反应制尿素被认为是实现清洁和可持续生产的一种有前途的策略,引起了广泛关注。相比于传统的Bosch-Meiser工艺,C-N偶联反应具有降低能耗和减少碳排放的潜力。本文综述了电催化CO2和NO3-共还原合成尿素的最新研究进展,深入探讨了该反应的机理,结合原位表征和密度泛函理论计算,揭示了促进C-N偶联和提升尿素合成效率的微观机制。本文还总结了提高尿素产率的关键催化剂设计策略,包括杂原子掺杂、缺陷工程、异质结构构建、合金化和原子尺度等调控策略。最后,本文提出了未来研究及工业化应用的挑战与展望,特别关注如何在大规模生产中实现高效、低能耗的尿素合成,同时分析了催化剂的结构设计和精细调控,为实现可持续尿素生产提供理论和实践支持。

关键词: 电化学, 催化剂, 可持续性, NO3-还原反应, CO2还原反应, 尿素电合成

Abstract:

Urea is a critical agricultural nitrogen fertilizer and an essential component for crop growth. Electrocatalytic co-reduction of CO2 and NO3-via C-N coupling to synthesize urea has emerged as a promising strategy for achieving clean and sustainable urea production, and has attracted considerable attentions. Compared to the traditional Bosch-Meiser process, the C-N coupling reaction offers potential for reduced energy consumption and lower carbon emissions. This review summarizes recent research progress in electrocatalytic co-reduction of CO2 and NO3- for urea synthesis, providing an in-depth discussion of the reaction mechanisms. By integrating in-situ characterization techniques and density functional theory calculations, this paper reveals the micro-level mechanisms that promote C-N coupling and enhance urea synthesis efficiency. Key catalyst design strategies to improve urea yields are also outlined, including heteroatom doping, defect engineering, heterostructure construction, alloying, and atomic-scale modulation. Finally, the challenges and prospects for future research and industrial applications are addressed, with a focus on achieving efficient, low energy consumption urea synthesis at large scale. It also analyzes the structural design and precise regulation of catalysts, providing theoretical and practical support for sustainable urea production.

Key words: electrochemistry, catalyst, sustainability, nitrate reduction reaction, carbon dioxide reduction reaction, urea electrosynthesis

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn