1 |
刘丽丽. 焦炉煤气净化工艺研究现状及发展趋势[J]. 山东化工, 2021, 50(8): 63-64.
|
|
LIU Lili. Research status and development trend of coke oven gas purification process[J]. Shandong Chemical Industry, 2021, 50(8): 63-64.
|
2 |
张淑娇, 董丽丽, 王力川, 等. 焦炉煤气净化工艺的研究进展[J]. 山东化工, 2021, 50(23): 79-80, 94.
|
|
ZHANG Shujiao, DONG Lili, WANG Lichuan, et al. Research progress in coke oven gas purification process[J]. Shandong Chemical Industry, 2021, 50(23): 79-80, 94.
|
3 |
Portha JEANFRANÇOIS, WILMAR UribeSoto, JEANMARC Commenge, et al. Techno-economic and carbon footprint analyses of a coke oven gas reuse process for methanol production[J]. Processes, 2021, 9(6): 1042.
|
4 |
李慧敏. 焦炉煤气制天然气的重要意义[J]. 山西化工, 2019, 39(1): 103-104.
|
|
LI Huimin. The important significance of coke oven gas for natural gas production[J]. Shanxi Chemical Industry, 2019, 39(1): 103-104.
|
5 |
杜雄伟. 焦炉煤气制天然气工艺技术探讨[J]. 天然气化工(C1化学与化工), 2014, 39(4): 74-76, 91.
|
|
DU Xiongwei. A discussion on processes for conversion of coke oven gas to natural gas[J]. Natural Gas Chemical Industry, 2014, 39(4): 74-76, 91.
|
6 |
吴越峰, 吴双月. 利用焦炉气生产合成氨工艺路线探讨[C]//全国炼焦行业利用焦炉煤气生产甲醇及应用研讨会. 北京, 2006: 135-150.
|
|
WU Yuefeng, WU Shuangyue. Discussion on the process route of using coke oven gas to produce synthetic ammonia[C]//National Coking Industry Using Coke Oven Gas to Produce Methanol and Application Seminar. Beijing, 2006: 135-150.
|
7 |
LIU Xin, YUAN Zengwei. Life cycle environmental performance of by-product coke production in China[J]. Journal of Cleaner Production, 2016, 112: 1292-1301.
|
8 |
VAN ACHT S C J, LAYCOCK C J, CARR S J W, et al. Optimization of VPSA-EHP/C process for high-pressure hydrogen recovery from coke oven gas using CO selective adsorbent[J]. International Journal of Hydrogen Energy, 2021, 46(1): 709-725.
|
9 |
张华西, 安楚玉, 张礼树, 等. 焦炉煤气加氢脱硫催化剂的制备及应用[J]. 天然气化工(C1化学与化工), 2019, 44(2): 46-49.
|
|
ZHANG Huaxi, AN Chuyu, ZHANG Lishu, et al. Preparation and application of catalysts for hydrogenation desulfurization of coke-oven gas[J]. Natural Gas Chemical Industry, 2019, 44(2): 46-49.
|
10 |
DE OLIVEIRA CARNEIRO Lucas, DE VASCONCELOS Suênia Fernandes, DE FARIAS NETO Gilvan Wanderley, et al. Improving H2S removal in the coke oven gas purification process[J]. Separation and Purification Technology, 2021, 257: 117862.
|
11 |
裴学国, 亓栋, 丁卉, 等. T202型催化剂在焦炉气二级加氢脱硫工艺中的应用[J]. 化肥设计, 2011, 49(5): 48-51.
|
|
PEI Xueguo, QI Dong, DING Hui, et al. Application for T202 type catalyst in hydrogenation desulphurization process of coking-oven gas in 2 stages[J]. Chemical Fertilizer Design, 2011, 49(5): 48-51.
|
12 |
杨宝刚, 黄成忠, 朱军利. JT-8型加氢催化剂在焦炉煤气制甲醇装置上的工业应用[J]. 工业催化, 2014, 22(8): 628-631.
|
|
YANG Baogang, HUANG Chengzhong, ZHU Junli. Commercial application of JT-8 hydrogenation catalyst in the plant of methanol synthesized from coke oven gas[J]. Industrial Catalysis, 2014, 22(8): 628-631.
|
13 |
朱军利, 张林生, 盛明泽, 等. JT-8型焦炉煤气加氢催化剂失活样品剖析[J]. 工业催化, 2020, 28(9): 45-50.
|
|
ZHU Junli, ZHANG Linsheng, SHENG Mingze, et al. Analysis of deactivated hydrogenation catalyst JT-8[J]. Industrial Catalysis, 2020, 28(9): 45-50.
|
14 |
郭玉峰, 蒋晓娟. 焦炉气净化中的有机硫加氢工艺应用技术[J]. 山西化工, 2017, 37(3): 52-55.
|
|
GUO Yufeng, JIANG Xiaojuan. Application technology of organic sulfur hydrogenation process in purification of coke oven gas[J]. Shanxi Chemical Industry, 2017, 37(3): 52-55.
|
15 |
陈程, 曹晓娜, 徐广通, 等. 渣油加氢失活催化剂的积炭规律[J]. 石油学报(石油加工), 2016, 32(6): 1221-1227.
|
|
CHEN Cheng, CAO Xiaona, XU Guangtong, et al. Pattern of coke deposition on the spent residue hydrotreating catalysts[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(6): 1221-1227.
|
16 |
李乃珍, 孙瑞洁, 秦志峰, 等. 焦炉煤气常量含碳气氛对加氢脱硫催化剂活性、选择性和积炭的影响[J]. 化工进展, 2023, 42(2): 783-793.
|
|
LI Naizhen, SUN Ruijie, QIN Zhifeng, et al. Effects of constant carbon atmosphere on the activity, selectivity and coking of catalysts in hydrodesulfurization of coke oven gas[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 783-793.
|
17 |
ANCHEYTA J, BETANCOURT G, CENTENO G, et al. Catalyst deactivation during hydroprocessing of maya heavy crude oil. 1. Evaluation at constant operating conditions[J]. Energy & Fuels, 2002, 16(6): 1438-1443.
|
18 |
韦晋科, 张强, 李永光. 烧结机中温SCR脱硝催化剂失活原因分析[J]. 河北冶金, 2021(12): 75-79.
|
|
WEI Jinke, ZHANG Qiang, LI Yongguang. Analysis on causation for deactivation of medium temperature denitration catalyst in sintering machine[J]. Hebei Metallurgy, 2021(12): 75-79.
|
19 |
MAHIPALREDDY B. Dispersion and activity of molybdena-alumina catalysts prepared by impregnation and solid/solid wetting methods[J]. Journal of Catalysis, 1992, 136(1): 50-58.
|
20 |
余长春, 李然家, 王伟, 等. CO2/CH4干重整转化催化剂的积碳控制研究[J]. 石油化工, 2020, 49(10): 925-930.
|
|
YU Changchun, LI Ranjia, WANG Wei, et al. Study of carbon deposition controlling over CO2/CH4 dry reforming catalyst[J]. Petrochemical Technology, 2020, 49(10): 925-930.
|
21 |
徐军科, 羌宁. 反应器材质对Ni-Co双金属催化剂上沼气重整制氢性能与积炭的影响[J]. 天然气化工(C1化学与化工), 2021, 46(4): 52-57, 69.
|
|
XU Junke, QIANG Ning. Effect of reactor material on performance and carbon deposition of biogas reforming for hydrogen production over Ni-Co bimetallic catalyst[J]. Natural Gas Chemical Industry, 2021, 46(4): 52-57, 69.
|
22 |
SHAMSI Abolghasem, BALTRUS John P, SPIVEY James J. Characterization of coke deposited on Pt/alumina catalyst during reforming of liquid hydrocarbons[J]. Applied Catalysis A: General, 2005, 293: 145-152.
|
23 |
LI Qing, SUI Zhijun, ZHOU Xinggui, et al. Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: Coke characterization and kinetic study[J]. Topics in Catalysis, 2011, 54(13): 888.
|
24 |
Pedro CASTAÑO, ELORDI Gorka, OLAZAR Martin, et al. Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 91-100.
|
25 |
王雪, 孙昱东, 张强, 等. 催化剂上积炭结构和组成的分析研究方法[J]. 分析测试技术与仪器, 2013, 19(1): 6-11.
|
|
WANG Xue, SUN Yudong, ZHANG Qiang, et al. Analytical methods for structure and composition of coke deposited on catalysts[J]. Analysis and Testing Technology and Instruments, 2013, 19(1): 6-11.
|
26 |
BAUER F, GEIDEL E, GEYER W, et al. TG-FTIR and isotopic studies on coke formation during the MTG process[J]. Microporous and Mesoporous Materials, 1999, 29(1): 109-115.
|
27 |
RODRIGUEZ Andrea C, María E SAD, CRUCHADE Hugo, et al. Study of catalyst deactivation during 1,3-butanediol dehydration to produce butadiene[J]. Microporous and Mesoporous Materials, 2021, 320: 111066.
|
28 |
张萍, 辛靖, 范文轩, 等. 柴油加氢精制剂失活研究[J]. 工业催化, 2021, 29(1): 53-58.
|
|
ZHANG Ping, XIN Jing, FAN Wenxuan, et al. Study on the deactivation of hydrorefining catalyst[J]. Industrial Catalysis, 2021, 29(1): 53-58.
|
29 |
孙锦宜. 工业催化剂的失活与再生[M]. 北京: 化学工业出版社, 2006.
|
|
SUN Jinyi. Deactivation and regeneration of industrial catalysts[M]. Beijing: Chemical Industry Press, 2006.
|
30 |
汪佩华, 秦志峰, 吴琼笑, 等. 磷添加方式对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2021, 40(2): 890-900.
|
|
WANG Peihua, QIN Zhifeng, WU Qiongxiao, et al. Effect of phosphorus adding manners on the performance of NiMo/Al2O3 catalyst in hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 890-900.
|
31 |
KALUŽA L, PALCHEVA R, JIRÁTOVÁ K, et al. Characterization and HDS activity of Mo and NiMo sulfided catalyst prepared by thioglycolic acid assisted hydrothermal deposition method[J]. Journal of Alloys and Compounds, 2022, 903: 163925.
|