化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5415-5426.DOI: 10.16085/j.issn.1000-6613.2023-1501
• 能源加工与技术 • 上一篇
徐维彬1,2(), 蒋迎花3, 郑岚1,2, 王玉琪1,2, 吴乐1,2()
收稿日期:
2023-08-28
修回日期:
2023-10-13
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
吴乐
作者简介:
徐维彬(2000—),男,硕士研究生,从事过程模拟与优化研究。E-mail:1758932390@qq.com。
基金资助:
XU Weibin1,2(), JIANG Yinghua3, ZHENG Lan1,2, WANG Yuqi1,2, WU Le1,2()
Received:
2023-08-28
Revised:
2023-10-13
Online:
2024-10-15
Published:
2024-10-29
Contact:
WU Le
摘要:
将农林废弃物、藻类等生物质原料通过热化学转化和加氢裂化后可以制成生物汽柴油产品,因其具有可持续性和可再生性,可部分代替化石燃料。生物炼厂所得汽柴油产品的生产成本较高,如何降低其生产成本仍是目前研究的热点问题。由于生物炼厂和传统炼厂均具有裂化和加氢装置且生物质油与蜡油理化性质相似,因此可考虑将生物质油与蜡油在流化床催化裂化(FCC)装置中共同炼制。本文围绕共炼过程的研究和相关的模拟研究,介绍了共炼过程、生物质的来源、生物油的制备方法、共炼机理,总结了共炼比例的影响、其技术放大现状以及生物质油氧含量对产品的影响,结合模拟研究,对其过程优化与评价作了说明,最后对存在的问题及未来的发展作了讨论。由此可知,共炼技术是一项具备技术可行性和经济可行性的绿色技术。
中图分类号:
徐维彬, 蒋迎花, 郑岚, 王玉琪, 吴乐. 生物质油与蜡油在FCC装置中共炼产汽柴油的研究进展[J]. 化工进展, 2024, 43(10): 5415-5426.
XU Weibin, JIANG Yinghua, ZHENG Lan, WANG Yuqi, WU Le. Research progress on co-processing of bio-oil and vacuum gas oil to produce gasoline and diesel in FCC units[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5415-5426.
参数 | 快速热解油 | 催化热解油 | 加氢脱氧生物质油 | 蜡油 |
---|---|---|---|---|
水质量分数/% | 25~30 | 9~11 | 2.2~10 | 0.1~0.6 |
pH | 2.8~3 | 3.5~3.7 | 2.23 | — |
黏度(40℃)/mm2·s-1 | 33.39 | — | 45~47.54 | 25~65 |
C元素质量分数/% | 39~54 | 66~73 | 53~75 | 85~86 |
H元素质量分数/% | 5~7.6 | 6.4~7 | 8.1~9.6 | 10~13 |
O元素质量分数/% | 35~50 | 20~27 | 13~20 | <1 |
N元素质量分数/% | 0.4~1.1 | <0.1 | <0.2 | <1 |
S元素质量分数/% | <0.1 | <0.1 | <0.1 | 1~2 |
原料 | 松木、稻田秸秆 | 稻田秸秆、松木屑 | 模型化合物愈创木酚、柳枝稷快速热解油 | — |
参考文献 | [ | [ | [ | [ |
表1 生物质油和VGO的特性
参数 | 快速热解油 | 催化热解油 | 加氢脱氧生物质油 | 蜡油 |
---|---|---|---|---|
水质量分数/% | 25~30 | 9~11 | 2.2~10 | 0.1~0.6 |
pH | 2.8~3 | 3.5~3.7 | 2.23 | — |
黏度(40℃)/mm2·s-1 | 33.39 | — | 45~47.54 | 25~65 |
C元素质量分数/% | 39~54 | 66~73 | 53~75 | 85~86 |
H元素质量分数/% | 5~7.6 | 6.4~7 | 8.1~9.6 | 10~13 |
O元素质量分数/% | 35~50 | 20~27 | 13~20 | <1 |
N元素质量分数/% | 0.4~1.1 | <0.1 | <0.2 | <1 |
S元素质量分数/% | <0.1 | <0.1 | <0.1 | 1~2 |
原料 | 松木、稻田秸秆 | 稻田秸秆、松木屑 | 模型化合物愈创木酚、柳枝稷快速热解油 | — |
参考文献 | [ | [ | [ | [ |
参数 | 快速热解 | 催化热解 | 水热液化 |
---|---|---|---|
反应温度/℃ | 300~600 | 200~500 | 280~370 |
反应压力/MPa | 0.1~1 | 1~10 | 10~22 |
生物质原油收率/% | 20~70 | 30~70 | 20~60 |
技术优势 | 反应速率快,生物质转化效率高,有害气体产生少 | 由于催化剂的加入,产物具有一定的选择性,产物含氧量、含水量较低 | 通常用于转化高含水量的原料,如藻类生物质 |
技术劣势 | 产品含水量较高,热值相对较低,较高的升温速率使其能耗较大 | 催化剂易结焦失活 | 水相产物有机物含量高,毒性较大,产品热值相对较低 |
参考文献 | [ | [ | [ |
表2 生物油制备方法对比
参数 | 快速热解 | 催化热解 | 水热液化 |
---|---|---|---|
反应温度/℃ | 300~600 | 200~500 | 280~370 |
反应压力/MPa | 0.1~1 | 1~10 | 10~22 |
生物质原油收率/% | 20~70 | 30~70 | 20~60 |
技术优势 | 反应速率快,生物质转化效率高,有害气体产生少 | 由于催化剂的加入,产物具有一定的选择性,产物含氧量、含水量较低 | 通常用于转化高含水量的原料,如藻类生物质 |
技术劣势 | 产品含水量较高,热值相对较低,较高的升温速率使其能耗较大 | 催化剂易结焦失活 | 水相产物有机物含量高,毒性较大,产品热值相对较低 |
参考文献 | [ | [ | [ |
生物质原料类型 | 生物油类型 | 共炼比例/% | 温度/℃ | 规模 | 生物炭质量分数/% | 参考文献 |
---|---|---|---|---|---|---|
松木 | 快速热解油 | 10,20 | 540 | FCC生产能力150kg/h | 2,5 | [ |
松木 | 快速热解油 | 5,10 | 540 | FCC生产能力200kg/h | 1,2 | [ |
木材 | 加氢脱氧快速热解油 | 20 | 520 | 实验室级别 | — | [ |
山毛榉木 | 快速热解油 | 10 | 525 | 试点规模30g/h | 2 | [ |
山毛榉木 | 加氢脱氧快速热解油 | 10 | 525 | 试点规模30g/h | 7 | [ |
水稻秸秆 | 加氢脱氧快速热解油 | 5~20 | 520 | 实验室级别 | — | [ |
藻类 | 热液液化油 | 10 | 520 | 实验室级别 | — | [ |
表3 部分共炼研究结果
生物质原料类型 | 生物油类型 | 共炼比例/% | 温度/℃ | 规模 | 生物炭质量分数/% | 参考文献 |
---|---|---|---|---|---|---|
松木 | 快速热解油 | 10,20 | 540 | FCC生产能力150kg/h | 2,5 | [ |
松木 | 快速热解油 | 5,10 | 540 | FCC生产能力200kg/h | 1,2 | [ |
木材 | 加氢脱氧快速热解油 | 20 | 520 | 实验室级别 | — | [ |
山毛榉木 | 快速热解油 | 10 | 525 | 试点规模30g/h | 2 | [ |
山毛榉木 | 加氢脱氧快速热解油 | 10 | 525 | 试点规模30g/h | 7 | [ |
水稻秸秆 | 加氢脱氧快速热解油 | 5~20 | 520 | 实验室级别 | — | [ |
藻类 | 热液液化油 | 10 | 520 | 实验室级别 | — | [ |
生物油类型 | 生物油氧 质量分数/% | 共炼比例/% | 产品结果分布/% | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
干气 | 液化石油气 | 汽油 | 轻质循环油 | 重质循环油 | 油浆油 | 焦炭 | ||||
山毛榉木快速热解油 | 50 | 10 | 4.5 | 15.0 | 41.0 | 17.1 | 12.7 | — | 7.8 | [ |
1.8 | 12.9 | 37.0 | 17.3 | 13.3 | — | 6.4 | ||||
山毛榉木催化热解油 | 27 | 20 | 4.5 | 15.0 | 41.0 | 17.1 | 12.7 | — | 7.8 | [ |
2.2 | 13.0 | 41.2 | 17.8 | 13.3 | — | 6.9 | ||||
加氢脱氧稻草快速热解油 | 20 | 20 | 2.0 | 24.5 | 53.5 | 9.5 | 8.0 | — | 4.5 | [ |
3.0 | 19.0 | 53 | 12.5 | 5.0 | — | 7.5 | ||||
伐木剩余物快速热解油 | 36 | 20 | 2.0 | 8.0 | 16.0 | 15.0 | 8.0 | 46.0 | 5.0 | [ |
4.0 | 9.0 | 17.0 | 16.0 | 6.0 | 31.0 | 10.0 | ||||
伐木剩余物催化热解油 | 22 | 20 | 2.0 | 8.0 | 16.0 | 15.0 | 8.0 | 46.0 | 5.0 | [ |
3.0 | 9.0 | 19.0 | 17.0 | 6.0 | 32.0 | 10.0 | ||||
加氢脱氧伐木剩余物快速热解油 | 22 | 20 | 2.0 | 8.0 | 16.0 | 15.0 | 8.0 | 46.0 | 5.0 | [ |
3.0 | 9.0 | 18.0 | 16.0 | 7.0 | 35.0 | 8.0 | ||||
加氢脱氧松木快速热解油 | 21 | 20 | 1.8 | 23.5 | 48.0 | 22 | 4.0 | — | 3.6 | [ |
2.1 | 20.5 | 45.5 | 24 | 3.2 | — | 4.2 | ||||
松木片快速热解油 | 50 | 10 | 4 | 16.1 | 39.9 | 18.8 | 15.0 | — | 6.2 | [ |
5.2 | 12.9 | 39.7 | 19.4 | 14.4 | — | 8.4 |
表4 不同氧含量生物油进料对共炼产品的影响
生物油类型 | 生物油氧 质量分数/% | 共炼比例/% | 产品结果分布/% | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
干气 | 液化石油气 | 汽油 | 轻质循环油 | 重质循环油 | 油浆油 | 焦炭 | ||||
山毛榉木快速热解油 | 50 | 10 | 4.5 | 15.0 | 41.0 | 17.1 | 12.7 | — | 7.8 | [ |
1.8 | 12.9 | 37.0 | 17.3 | 13.3 | — | 6.4 | ||||
山毛榉木催化热解油 | 27 | 20 | 4.5 | 15.0 | 41.0 | 17.1 | 12.7 | — | 7.8 | [ |
2.2 | 13.0 | 41.2 | 17.8 | 13.3 | — | 6.9 | ||||
加氢脱氧稻草快速热解油 | 20 | 20 | 2.0 | 24.5 | 53.5 | 9.5 | 8.0 | — | 4.5 | [ |
3.0 | 19.0 | 53 | 12.5 | 5.0 | — | 7.5 | ||||
伐木剩余物快速热解油 | 36 | 20 | 2.0 | 8.0 | 16.0 | 15.0 | 8.0 | 46.0 | 5.0 | [ |
4.0 | 9.0 | 17.0 | 16.0 | 6.0 | 31.0 | 10.0 | ||||
伐木剩余物催化热解油 | 22 | 20 | 2.0 | 8.0 | 16.0 | 15.0 | 8.0 | 46.0 | 5.0 | [ |
3.0 | 9.0 | 19.0 | 17.0 | 6.0 | 32.0 | 10.0 | ||||
加氢脱氧伐木剩余物快速热解油 | 22 | 20 | 2.0 | 8.0 | 16.0 | 15.0 | 8.0 | 46.0 | 5.0 | [ |
3.0 | 9.0 | 18.0 | 16.0 | 7.0 | 35.0 | 8.0 | ||||
加氢脱氧松木快速热解油 | 21 | 20 | 1.8 | 23.5 | 48.0 | 22 | 4.0 | — | 3.6 | [ |
2.1 | 20.5 | 45.5 | 24 | 3.2 | — | 4.2 | ||||
松木片快速热解油 | 50 | 10 | 4 | 16.1 | 39.9 | 18.8 | 15.0 | — | 6.2 | [ |
5.2 | 12.9 | 39.7 | 19.4 | 14.4 | — | 8.4 |
25 | KUMAR Ravinder, STREZOV, Vladimir. Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110152. |
26 | KABIR G, HAMEED B H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 945-967. |
27 | SHI Wen, JIA Jingfu, GAO Yahui, et al. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water[J]. Bioresource Technology, 2013, 146: 355-362. |
28 | LI Zhixia, CAO Jiangfei, HUANG Kai, et al. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse[J]. Bioresource Technology, 2015, 177: 159-168. |
29 | LEMOINE F, MAUPIN I, LEMÉE L, et al. Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae[J]. Bioresource Technology, 2013, 142: 1-8. |
30 | MOHAN Dinesh, PITTMAN Charles U, STEELE Philip H. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy & Fuels, 2006, 20(3): 848-889. |
31 | MOLINDER Roger, Linda SANDSTRÖM, WIINIKKA Henrik. Characteristics of particles in pyrolysis oil[J]. Energy & Fuels, 2016, 30(11): 9456-9462. |
32 | Ersan PÜTÜN. Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst[J]. Energy, 2010, 35(7): 2761-2766. |
33 | LU Qiang, ZHANG Zhifei, DONG Changqing, et al. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: An analytical PY-GC/MS study[J]. Energies, 2010, 3(11): 1805-1820. |
34 | JARVIS Jacqueline M, ALBRECHT Karl O, BILLING Justin M, et al. Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks[J]. Energy & Fuels, 2018, 32(8): 8483-8493. |
35 | 陈裕鹏, 黄艳琴, 阴秀丽, 等. 藻类生物质水热液化制备生物油的研究进展[J]. 石油学报(石油加工), 2014, 30(4): 756-763. |
CHEN Yupeng, HUANG Yanqin, YIN Xiuli, et al. Research progress of producing bio-oil from hydrothermal liquefaction of algae[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(4): 756-763. | |
36 | KREVELEN Van. Coal-Topology-Physic-Chemistry-Constitution[M]. 3ed ed. Amsterdam: Elsevier, 1993: 190-216. |
37 | FOGASSY Gabriella, THEGARID Nicolas, TOUSSAINT Guy, et al. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units[J]. Applied Catalysis B: Environmental, 2010, 96(3/4): 476-485. |
38 | HUBER George W, CORMA Avelino. Synergies between bio- and oil refineries for the production of fuels from biomass[J]. Angewandte Chemie International Edition, 2007, 46(38): 7184-7201. |
39 | OSMONT Antoine, CATOIRE Laurent, Iskender GÖKALP, et al. Thermochemistry of C-C and C-H bond breaking in fatty acid methyl esters[J]. Energy & Fuels, 2007, 21(4): 2027-2032. |
40 | GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J]. Applied Catalysis A: General, 2001, 212(1/2): 83-96. |
41 | PINHO Andrea De Rezende, DE ALMEIDA Marlon B B, MENDES Fabio Leal, et al. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production[J]. Fuel, 2017, 188: 462-473. |
42 | HUYNH Thuan Minh, ARMBRUSTER Udo, ATIA Hanan, et al. Upgrading of bio-oil and subsequent co-processing under FCC conditions for fuel production[J]. Reaction Chemistry & Engineering, 2016, 1(2): 239-251. |
43 | SAUVANAUD L, MATHIEU Y, CORMA A, et al. Co-processing of lignocellulosic biocrude with petroleum gas oils[J]. Applied Catalysis A: General, 2018, 551: 139-145. |
44 | PINHO Andrea De Rezende, DE ALMEIDA Marlon B B, MENDES Fabio Leal, et al. Co-processing raw bio-oil and gasoil in an FCC unit[J]. Fuel Processing Technology, 2015, 131: 159-166. |
45 | Susan VAN DYK, SU Jianping, EBADIAN Mahmood, et al. Production of lower carbon-intensity fuels by co-processing biogenic feedstocks: Potential and challenges for refineries[J]. Fuel, 2022, 324: 124636. |
46 | HAN Xue, WANG Haoxiang, ZENG Yimin, et al. Advancing the application of bio-oils by co-processing with petroleum intermediates: A review[J]. Energy Conversion and Management: X, 2021, 10: 100069. |
47 | Nguyen LE-PHUC, Phuong T NGO, Quan L M HA, et al. Efficient hydrodeoxygenation of guaiacol and fast-pyrolysis oil from rice straw over PtNiMo/SBA-15 catalyst for co-processing in fluid catalytic cracking process[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103552. |
48 | Eduardo SANTILLAN-JIMENEZ, PACE Robert, MORGAN Tonya, et al. Co-processing of hydrothermal liquefaction algal bio-oil and petroleum feedstock to fuel-like hydrocarbons via fluid catalytic cracking[J]. Fuel Processing Technology, 2019, 188: 164-171. |
49 | ESCHENBACHER Andreas, MYRSTAD Trond, BECH Niels, et al. Co-processing of wood and wheat straw derived pyrolysis oils with FCC feed—Product distribution and effect of deoxygenation[J]. Fuel, 2020, 260: 116312. |
50 | WU Le, YANG Yong, YAN Ting, et al. Sustainable design and optimization of co-processing of bio-oil and vacuum gas oil in an existing refinery[J]. Renewable and Sustainable Energy Reviews, 2020, 130: 109952. |
51 | GOEDKOOP Mark. The Eco-indicator 99: A damage oriented method for life cycle impact assessment[M]. 3rd ed. Netherlands: PRé Consultants; 2001: 41-61. |
52 | 吴乐, 汤杰国, 朱强, 等. 加氢反应过程对炼油厂加氢系统氢耗影响的分析[J]. 石油学报(石油加工), 2016, 32(5): 1030-1037. |
WU Le, TANG Jieguo, ZHU Qiang, et al. Analysis of effects of hydrogenation on hydrogen consumption of hydrotreating system in a refinery[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(5): 1030-1037. | |
53 | WU Le, YAN Ting, LEI Qingyu, et al. Operational optimization of co-processing of heavy oil and bio-oil based on the coordination of desulfurization and deoxygenation[J]. Energy, 2022, 239: 122558. |
54 | 李大东. 加氢处理工艺与工程[M]. 北京: 中国石化出版社, 2004: 1316-1374. |
LI Dadong. Hydrogenation process and engineering[M]. Beijing: China Petrochemical Press, 2004: 1316-1374. | |
55 | CHOUDHARY Tushar V, PARROTT Stephen, JOHNSON Byron. Unraveling heavy oil desulfurization chemistry: Targeting clean fuels[J]. Environmental Science & Technology, 2008, 42(6): 1944-1947. |
56 | 董婷, 韩兴华, 高磊, 等. 苯酚和苯甲醚加氢脱氧宏观动力学[J]. 化学反应工程与工艺, 2019, 35(2): 138-142. |
DONG Ting, HAN Xinghua, GAO Lei, et al. Macroscopic kinetics of hydrodeoxygenation of phenol and anisole[J]. Chemical Reaction Engineering and Technology, 2019, 35(2): 138-142. | |
1 | ZHANG Xugang, ZHANG Mingyue, ZHANG Hua, et al. A review on energy, environment and economic assessment in remanufacturing based on life cycle assessment method[J]. Journal of Cleaner Production, 2020, 255: 120160. |
2 | KANG Yating, YANG Qing, BARTOCCI Pietro, et al. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109842. |
3 | KHOSHNEVISAN Benyamin, TABATABAEI Meisam, TSAPEKOS Panagiotis, et al. Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109493. |
4 | UNEP. Converting waste agricultural biomass into a resource[M]. Osaka: United Nations Environment Programme, 2009. |
5 | TRIPATHI Nimisha, HILLS Colin D, SINGH Raj S, et al. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource[J]. NPJ Climate and Atmospheric Science, 2019, 2: 35. |
6 | 郭鹏坤, 李攀, 常春, 等. 计算机模拟技术在生物质转化中的应用研究进展[J]. 化工进展, 2020, 39(8): 3027-3040. |
GUO Pengkun, LI Pan, CHANG Chun, et al. Advances in the application of computer simulation technology in biomass conversion[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040. | |
7 | MIRKOUEI Amin, HAAPALA Karl R, SESSIONS John, et al. A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 15-35. |
8 | DE MIGUEL MERCADER Ferran, GROENEVELD Michiel J, KERSTEN Sascha R A, et al. Hydrodeoxygenation of pyrolysis oil fractions: Process understanding and quality assessment through co-processing in refinery units[J]. Energy & Environmental Science, 2011, 4(3): 985-997. |
9 | WU Le, WANG Yuqi, ZHENG Lan, et al. Design and optimization of bio-oil co-processing with vacuum gas oil in a refinery[J]. Energy Conversion and Management, 2019, 195: 620-629. |
10 | WANG Chenxi, VENDERBOSCH Robbie, FANG Yunming. Co-processing of crude and hydrotreated pyrolysis liquids and VGO in a pilot scale FCC riser setup[J]. Fuel Processing Technology, 2018, 181: 157-165. |
11 | Nguyen LE-PHUC, Phuong T NGO, Quan L M HA, et al. Efficient hydrodeoxygenation of guaiacol and fast-pyrolysis oil from rice straw over PtNiMo/SBA-15 catalyst for co-processing in fluid catalytic cracking process[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103552. |
57 | WU Le, LIU Yongzhong, ZHANG Qundan. Operational optimization of a hydrotreating system based on removal of sulfur compounds in hydrotreaters coupled with a fluid catalytic cracker[J]. Energy & Fuels, 2017, 31(9): 9850-9862. |
58 | WU Le, WANG Yuqi, ZHENG Lan, et al. Techno-economic analysis of bio-oil co-processing with vacuum gas oil to transportation fuels in an existing fluid catalytic cracker[J]. Energy Conversion and Management, 2019, 197: 111901. |
59 | VASALOS I A, LAPPAS A A, KOPALIDOU E P, et al. Biomass catalytic pyrolysis: Process design and economic analysis[J]. WIREs Energy and Environment, 2016, 5(3): 370-383. |
60 | RAFATI Mohammad, WANG Lijun, DAYTON David C, et al. Techno-economic analysis of production of Fischer-Tropsch liquids via biomass gasification: The effects of Fischer-Tropsch catalysts and natural gas co-feeding[J]. Energy Conversion and Management, 2017, 133: 153-166. |
61 | WU Le, WANG Yuqi, ZHENG Lan, et al. Multi-objective operational optimization of a hydrotreating process based on hydrogenation reaction kinetics[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15785-15793. |
62 | SEIDER Warren D, SEADER J D, LEWIN Daniel R, et al. Product and process design principles: Synthesis, analysis, and evaluation[M]. 3rd ed. Hoboken, NJ: John Wiley, 2009: 371-466. |
63 | LAMPERT David J, CAI Hao, ELGOWAINY Amgad. Wells to wheels: Water consumption for transportation fuels in the United States[J]. Energy & Environmental Science, 2016, 9(3): 787-802. |
64 | TESSUM Christopher W, HILL Jason D, MARSHALL Julian D. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52): 18490-18495. |
65 | DUNN Jennifer B. Biofuel and bioproduct environmental sustainability analysis[J]. Current Opinion in Biotechnology, 2019, 57: 88-93. |
66 | 柳恒饶, 刘光斌, 熊万明, 等. 不同温度下晚松生物质热解成分分析[J]. 广州化工, 2016, 44(11): 71-75. |
LIU Hengrao, LIU Guangbin, XIONG Wanming, et al. Analysis of pyrolytic component of pinus rigida at different temperature[J]. Guangzhou Chemical Industry, 2016, 44(11): 71-75. | |
67 | WANG Huamin, MALE Jonathan, WANG Yong. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis, 2013, 3(5): 1047-1070. |
12 | LINDFORS Christian, PAASIKALLIO Ville, KUOPPALA Eeva, et al. Co-processing of dry bio-oil, catalytic pyrolysis oil, and hydrotreated bio-oil in a micro activity test unit[J]. Energy & Fuels, 2015, 29(6): 3707-3714. |
13 | MANARA P, BEZERGIANNI S, PFISTERER U. Study on phase behavior and properties of binary blends of bio-oil/fossil-based refinery intermediates: A step toward bio-oil refinery integration[J]. Energy Conversion and Management, 2018, 165: 304-315. |
14 | NARANOV E R, DEMENT’EV K I, GERZELIEV I M, et al. The role of zeolite catalysis in modern petroleum refining: Contribution from domestic technologies[J]. Petroleum Chemistry, 2019, 59(3): 247-261. |
15 | 宋海涛, 达志坚, 朱玉霞, 等. 不同类型VGO的烃类组成及其催化裂化反应性能研究[J]. 石油炼制与化工, 2012, 43(2): 1-8. |
SONG Haitao, Zhijian DA, ZHU Yuxia, et al. A study of the hydrocarbon composition and catalytic cracking performance of different vgo[J]. Petroleum Processing and Petrochemicals, 2012, 43(2): 1-8. | |
16 | WANG Chenxi, LI Mingrui, FANG Yunming. Coprocessing of catalytic-pyrolysis-derived bio-oil with VGO in a pilot-scale FCC riser[J]. Industrial & Engineering Chemistry Research, 2016, 55(12): 3525-3534. |
17 | 陈雄华. 两粘度计算国外中间基原油VGO分子量的公式[J]. 广东化工, 2012, 39(12): 75-76. |
CHEN Xionghua. Two viscosity calculate formula of foreign middle base oil VGO molecular weight[J]. Guangdong Chemical Industry, 2012, 39(12): 75-76. | |
18 | PATWARDHAN Pushkaraj R, BROWN Robert C, SHANKS Brent H. Product distribution from the fast pyrolysis of hemicellulose[J]. ChemSusChem, 2011, 4(5): 636-643. |
19 | SHAFIZADEH Fred, FURNEAUX Richard H, COCHRAN Todd G, et al. Production of levoglucosan and glucose from pyrolysis of cellulosic materials[J]. Journal of Applied Polymer Science, 1979, 23(12): 3525-3539. |
20 | HUBER George W, IBORRA Sara, CORMA Avelino. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
21 | 牛琦. 典型藻类生物质热解实验与机理研究[D]. 天津: 天津大学, 2018. |
NIU Qi. Experimental and mechanism study on pyrolysis of typical algae biomass[D]. Tianjin: Tianjin University, 2018. | |
22 | VAMVUKA D. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview[J]. International Journal of Energy Research, 2011, 35(10): 835-862. |
23 | AGBLEVOR Foster A, MANTE O, MCCLUNG R, et al. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels[J]. Biomass and Bioenergy, 2012, 45: 130-137. |
24 | WESTERHOF Roel J M, KUIPERS Norbert J M, KERSTEN Sascha R A, et al. Controlling the water content of biomass fast pyrolysis oil[J]. Industrial & Engineering Chemistry Research, 2007, 46(26): 9238-9247. |
68 | 李波, 丁帅, 郭海军, 等. 生物油加氢脱氧催化剂研究进展[J]. 新能源进展, 2021, 9(6): 524-532. |
LI Bo, DING Shuai, GUO Haijun, et al. Research progress of bio-oil hydrodeoxygenation catalysts[J]. Advances in New and Renewable Energy, 2021, 9(6): 524-532. | |
69 | LORICERA C V, CASTAÑO P, INFANTES-MOLINA A, et al. Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel[J]. Green Chemistry, 2012, 14(10): 2759-2770. |
70 | WANG Yuxin, WU Jinhu, WANG Shengnian. Hydrodeoxygenation of bio-oil over Pt-based supported catalysts: Importance of mesopores and acidity of the support to compounds with different oxygen contents[J]. RSC Advances, 2013, 3(31): 12635-12640. |
71 | LIU Qiying, ZUO Hualiang, ZHANG Qi, et al. Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts[J]. Chinese Journal of Catalysis, 2014, 35(5): 748-756. |
72 | LI Zhenghua, Kimberly MAGRINI-BAIR, WANG Huamin, et al. Tracking renewable carbon in bio-oil/crude co-processing with VGO through 13C/12C ratio analysis[J]. Fuel, 2020, 275: 117770. |
73 | 张蓓蓓. 我国生物质原料资源及能源潜力评估[D]. 北京: 中国农业大学, 2018. |
ZHANG Beibei. Assessment of raw material supply capability and energy potential of biomass resources in china[D]. Beijing: China Agricultural University, 2018. | |
74 | 宁艳春, 杨雨富, 伊凤, 等. 生物质能是我国能源结构转型的重要途径[J]. 化学工业, 2022, 40(2): 33-35. |
NING Yanchun, YANG Yufu, YI Feng, et al. Biomass energy, an essential route for China’s energy structure transformation[J]. Chemical Industry, 2022, 40(2): 33-35. |
[1] | 罗世发, 王侃, 张冰剑, 陈清林. 原油常减压蒸馏装置热集成方案分析评价[J]. 化工进展, 2024, 43(9): 4810-4816. |
[2] | 孙启超, 聂美华, 伍联营, 胡仰栋. 风光储一体化水电联产系统的优化设计及调度[J]. 化工进展, 2024, 43(9): 4882-4891. |
[3] | 陈巨辉, 王振名, 李丹, 王柏森, ZHURAVKOV Michael, SIARHEI Lapatsin, 于广滨. 不同含水率下的生活垃圾气化特性模拟[J]. 化工进展, 2024, 43(9): 4900-4908. |
[4] | 李美萱, 成建凤, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王俊莲, 王春霞, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 高电压镍锰酸锂正极材料的合成与电化学机理[J]. 化工进展, 2024, 43(9): 5086-5094. |
[5] | 王禹程, 郭雄, 栾昕奇, 周健, 李想, 幸林广, 周雪芸, 刘颖, 汪德勇, 吴雪娟, 潘琦, 刘建新, 赵祯霞, 赵钟兴. 维生素U生产工艺优化及其热分解机理[J]. 化工进展, 2024, 43(9): 5157-5167. |
[6] | 王亚男, 刘琳琳, 庄钰, 都健. 基于代理模型的环氧乙烷制乙二醇工艺优化同步热集成[J]. 化工进展, 2024, 43(9): 5234-5241. |
[7] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
[8] | 焦文磊, 刘震, 陈俊先, 张天钰, 姬忠礼. 叶片式分离元件结构及性能影响因素研究进展[J]. 化工进展, 2024, 43(8): 4187-4202. |
[9] | 马永丽, 李沐阳, 马子皓, 王浩然, 王茂隆, 费瑶寒, 张露滨, 刘明言. 火星上的气固流态化模拟实验[J]. 化工进展, 2024, 43(8): 4203-4209. |
[10] | 蒋静智, 邵国伟, 崔海亭, 李洪涛, 杨奇. 三套管式加肋相变蓄热单元的强化传热特性[J]. 化工进展, 2024, 43(8): 4210-4221. |
[11] | 何海霞, 万亚萌, 李帆帆, 牛心雨, 张静雯, 李涛, 任保增. 盐酸萘甲唑啉在甲醇-乙酸乙酯体系中的动力学及结晶工艺[J]. 化工进展, 2024, 43(8): 4230-4245. |
[12] | 潘涵婷, 徐洪涛, 许多, 罗祝清. 低温条件下基于相变材料的锂离子电池保温特性分析[J]. 化工进展, 2024, 43(8): 4333-4341. |
[13] | 张笑恬, 刘思琪, 崔国民, 黄晓璜, 段欢欢, 王金阳. 基于定向协调策略改进换热单元优化的换热网络综合[J]. 化工进展, 2024, 43(8): 4342-4353. |
[14] | 胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
[15] | 谢娟, 贺文, 赵勖丞, 李帅辉, 卢真真, 丁哲宇. 分子动力学模拟在沥青体系中的应用研究进展[J]. 化工进展, 2024, 43(8): 4432-4449. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |