化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3285-3292.DOI: 10.16085/j.issn.1000-6613.2023-0887
• 生物与医药化工 • 上一篇
收稿日期:
2023-05-30
修回日期:
2023-11-08
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
李迅
作者简介:
季骁彦(1998—),男,硕士研究生,研究方向为生物质能源与化学品。E-mail:xiaoyanstuck@163.com。
基金资助:
JI Xiaoyan(), XU Rui, WANG Fei, LI Xun()
Received:
2023-05-30
Revised:
2023-11-08
Online:
2024-06-15
Published:
2024-07-02
Contact:
LI Xun
摘要:
生物柴油是一种环境友好的生物液体燃料,对于酶法生产生物柴油,迫切需要找到廉价和高效的固定化脂肪酶。本研究利用固体结合肽(SBPs)VKT,将其与疏棉状嗜热丝孢菌脂肪酶(Thermomyces lanuginosus lipase,TLL)融合构建融合脂肪酶,并将其固定化在硅基材料上,获得了一种新型的生物催化剂。在所测试的硅基材料(ZSM-5、Na-Y、SAR-100、MCM-41和SiO2微粉)中,固定在ZSM-5沸石上的TLL-VKT(TLL-VKT@ZSM-5)表现出最佳的固定化效率和最大负载,且具有优异的pH、温度、储存和洗脱稳定性。以TLL-VKT@ZSM-5为生物催化剂,对麻疯树籽油进行转酯化反应,48h生物柴油得率即达到93.9%。此外,TLL-VKT@ZSM-5还表现出较高的重复使用性能,在7次重复使用后,生物柴油得率依然保持71.9%。本研究的酶固定化方法具有简单高效、稳定性高和重复使用性能高等优点。本研究显示VKT肽在酶蛋白固定化的应用方面具有较好前景。
中图分类号:
季骁彦, 许蕊, 王飞, 李迅. VKT多肽介导的固定化疏棉状嗜热丝孢菌脂肪酶催化制备生物柴油[J]. 化工进展, 2024, 43(6): 3285-3292.
JI Xiaoyan, XU Rui, WANG Fei, LI Xun. Direct immobilization of Thermomyces lanuginosus lipase mediated by VKT-peptide for efficient biodiesel production from Jatropha curcas oil[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3285-3292.
洗脱剂 | 相对蛋白洗脱率/% |
---|---|
1mol/L NaCl | 2.0±0.1 |
2mol/L NaCl | 2.5±0.4 |
3mol/L NaCl | 5.6±0.2 |
4mol/L NaCl | 6.3±0.2 |
5mol/L NaCl | 12.7±0.9 |
1% Tween-20 | 1.6±0.2 |
2% Tween-20 | 1.3±0.2 |
3% Tween-20 | 4.4±1.5 |
1% SDS | 75.8±2.5 |
2% SDS | 100.0±1.1 |
3% SDS | 100.0±0.9 |
表1 TLL-VKT@ZSM-5的洗脱稳定性实验
洗脱剂 | 相对蛋白洗脱率/% |
---|---|
1mol/L NaCl | 2.0±0.1 |
2mol/L NaCl | 2.5±0.4 |
3mol/L NaCl | 5.6±0.2 |
4mol/L NaCl | 6.3±0.2 |
5mol/L NaCl | 12.7±0.9 |
1% Tween-20 | 1.6±0.2 |
2% Tween-20 | 1.3±0.2 |
3% Tween-20 | 4.4±1.5 |
1% SDS | 75.8±2.5 |
2% SDS | 100.0±1.1 |
3% SDS | 100.0±0.9 |
1 | ZDARTA J, MEYER A, JESIONOWSKI T, et al. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility[J]. Catalysts, 2018, 8(2): 92. |
2 | TAHSIRI Z, NIAKOUSARI M, HOSSEINI S M H, et al. Magnetic layered double hydroxide nanosheet as a biomolecular vessel for enzyme immobilization[J]. International Journal of Biological Macromolecules, 2022, 209: 1422-1429. |
3 | ZENG Qi, LI Qi, SUN Di, et al. Alcalase microarray base on metal ion modified hollow mesoporous silica spheres as a sustainable and efficient catalysis platform for proteolysis[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 565. |
4 | CHEN Jing, LENG Juan, YANG Xiai, et al. Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes[J]. Molecules, 2017, 22(2): 221. |
5 | SMITH S, GOODGE K, DELANEY M, et al. A comprehensive review of the covalent immobilization of biomolecules onto electrospun nanofibers[J]. Nanomaterials, 2020, 10(11): 2142. |
6 | ZENG Shuo, SHI Jinwei, FENG Anchao, et al. Modification of electrospun regenerate cellulose nanofiber membrane via atom transfer radical polymerization (ATRP) approach as advanced carrier for laccase immobilization[J]. Polymers, 2021, 13(2): 182. |
7 | DICOSIMO R, MCAULIFFE J, POULOSE A J, et al. Industrial use of immobilized enzymes[J]. Chemical Society Reviews, 2013, 42(15): 6437. |
8 | KATSIMPOURAS C, STEPHANOPOULOS G. Enzymes in biotechnology: Critical platform technologies for bioprocess development[J]. Current Opinion in Biotechnology, 2021, 69: 91-102. |
9 | TANG Zhenghua, PALAFOX-HERNANDEZ J P, Wing-Cheung LAW, et al. Biomolecular recognition principles for bionanocombinatorics: An integrated approach to elucidate enthalpic and entropic factors[J]. ACS Nano, 2013, 7(11): 9632-9646. |
10 | ZERNIA S, OTT F, BELLMANN-SICKERT K, et al. Peptide-mediated specific immobilization of catalytically active cytochrome P450 BM3 variant[J]. Bioconjugate Chemistry, 2016, 27(4): 1090-1097. |
11 | CARE A, BERGQUIST P L, SUNNA A. Solid-binding peptides: Smart tools for nanobiotechnology[J]. Trends in Biotechnology, 2015, 33(5): 259-268. |
12 | JANCIK PROCHAZKOVA A, SALINAS Y, YUMUSAK C, et al. Cyclic peptide stabilized lead halide perovskite nanoparticles[J]. Scientific Reports, 2019, 9: 12966. |
13 | CARE A, NEVALAINEN H, BERGQUIST P L, et al. Effect of Trichoderma reesei proteinases on the affinity of an inorganic-binding peptide[J]. Applied Biochemistry and Biotechnology, 2014, 173(8): 2225-2240. |
14 | SEKER U O S, SHARMA V K, AKHAVAN S, et al. Engineered peptides for nanohybrid assemblies[J]. Langmuir, 2014, 30(8): 2137-2143. |
15 | KUANG Zhifeng, KIM S N, CROOKES-GOODSON W J, et al. Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors[J]. ACS Nano, 2010, 4(1): 452-458. |
16 | BANSAL R, ELGUNDI Z, GOODCHILD S C, et al. The effect of oligomerization on a solid-binding peptide binding to silica-based materials[J]. Nanomaterials, 2020, 10(6): 1070. |
17 | RAMACHANDRAN B, CHAKRABORTY S, KANNAN R, et al. Immobilization of hyaluronic acid from Lactococcus lactis on polyethylene terephthalate for improved biocompatibility and drug release[J]. Carbohydrate Polymers, 2019, 206: 132-140. |
18 | RÜBSAM K, STOMPS B, BÖKER A, et al. Anchor peptides: A green and versatile method for polypropylene functionalization[J]. Polymer, 2017, 116: 124-132. |
19 | RÜBSAM K, DAVARI M, JAKOB F, et al. KnowVolution of the polymer-binding peptide LCI for improved polypropylene binding[J]. Polymers, 2018, 10(4): 423. |
20 | LIU Chang, STEER D L, SONG Haipeng, et al. Superior binding of proteins on a silica surface: Physical insight into the synergetic contribution of polyhistidine and a silica-binding peptide[J]. The Journal of Physical Chemistry Letters, 2022, 13(6): 1609-1616. |
21 | CARE A, CHI Fei, BERGQUIST P L, et al. Biofunctionalization of silica-coated magnetic particles mediated by a peptide[J]. Journal of Nanoparticle Research, 2014, 16(8): 1-9. |
22 | LI Lulu, LONG Liangkun, DING Shaojun. Direct affinity-immobilized phenolic acid decarboxylase by a linker peptide on zeolite for efficient bioconversion of ferulic acid into 4-vinylguaiacol[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14732-14742. |
23 | YU Seung-Hye, KUMAR M, KIM Il Won, et al. A comparative analysis of in vitro toxicity of synthetic zeolites on IMR-90 human lung fibroblast cells[J]. Molecules, 2021, 26(11): 3194. |
24 | GUTIÉRREZ-LÓPEZ A N, MENA-CERVANTES V Y, GONZÁLEZ-ESPINOSA M A, et al. Green and fast biodiesel production at room temperature using soybean and Jatropha curcas L. oils catalyzed by potassium ferrate[J]. Journal of Cleaner Production, 2022, 372: 133739. |
25 | KALITA P, BASUMATARY B, SAIKIA P, et al. Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification[J]. Energy Nexus, 2022, 6: 100087. |
26 | WANG Qian, GUO Xuan, GE Meiling, et al. Engineering balanced anions coupling with tailored functional groups of poly(ionic liquid)s immobilized lipase enables effective biodiesel production[J]. Molecular Catalysis, 2022, 531: 112673. |
27 | Roberto FERNANDEZ-LAFUENTE. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst[J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 62(3/4): 197-212. |
28 | MONTEIRO R R C, ARANA-PEÑA S, ROCHA T N DA, et al. Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?[J]. Renewable Energy, 2021, 164: 1566-1587. |
29 | XU Rui, CHEN Zirong, CHEN Yanyang, et al. Multiple strategies for high-efficiency expression of Thermomyces lanuginosus lipase in Pichia pastoris and production of biodiesel in solvent-free system[J]. Fuel, 2023, 333: 126246. |
30 | AMESHO K T T, LIN Yuan-Chung, CHEN Chinen, et al. Kinetics studies of sustainable biodiesel synthesis from Jatropha curcas oil by exploiting bio-waste derived CaO-based heterogeneous catalyst via microwave heating system as a green chemistry technique[J]. Fuel, 2022, 323: 123876. |
31 | GUTIÉRREZ-LÓPEZ A N, MENA-CERVANTES V Y, GARCÍA-SOLARES S M, et al. NaFeTiO4/Fe2O3-FeTiO3 as heterogeneous catalyst towards a cleaner and sustainable biodiesel production from Jatropha curcas L. oil[J]. Journal of Cleaner Production, 2021, 304: 127106. |
32 | GIWA A, ADEYEMI I, DINDI A, et al. Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: A review and case study[J]. Renewable and Sustainable Energy Reviews, 2018, 88: 239-257. |
33 | GO A W, SUTANTO S, ZULLAIKAH S, et al. A new approach in maximizing and direct utilization of whole Jatropha curcas L. kernels in biodiesel production — Technological improvement[J]. Renewable Energy, 2016, 85: 759-765. |
34 | YAN Jinyong, ZHENG Xianliang, DU Lei, et al. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: An efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts[J]. Biotechnology for Biofuels, 2014, 7(1): 1-8. |
35 | NICOLÁS P, LASSALLE V L, FERREIRA M L. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method[J]. Enzyme and Microbial Technology, 2017, 97: 97-103. |
36 | TIAN Kaiyuan, TAI Kee, B Jian Wei CHUA, et al. Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease[J]. Bioresource Technology, 2017, 245: 1491-1497. |
37 | ZHANG Meiling, Seung-Hyun JUN, Youngho WEE, et al. Activation of crosslinked lipases in mesoporous silica via lid opening for recyclable biodiesel production[J]. International Journal of Biological Macromolecules, 2022, 222: 2368-2374. |
38 | OKUMURA K, SATO K, KAMIOKA K, et al. Direct immobilization of triphenylphosphine palladium complexes on the external surface of zeolite Β[J]. Microporous and Mesoporous Materials, 2019, 288: 109571. |
39 | COSTA-SILVA T A, CARVALHO A K F, SOUZA C R F, et al. Highly effective Candida rugosa lipase immobilization on renewable carriers: Integrated drying and immobilization process to improve enzyme performance[J]. Chemical Engineering Research and Design, 2022, 183: 41-55. |
40 | GIRELLI A M, CHIAPPINI V. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review[J]. Journal of Biotechnology, 2023, 365: 29-47. |
41 | PARANDI E, SAFARIPOUR M, ABDELLATTIF M H, et al. Biodiesel production from waste cooking oil using a novel biocatalyst of lipase enzyme immobilized magnetic nanocomposite[J]. Fuel, 2022, 313: 123057. |
42 | NÁJERA-MARTÍNEZ E F, MELCHOR-MARTÍNEZ E M, SOSA-HERNÁNDEZ J E, et al. Lignocellulosic residues as supports for enzyme immobilization, and biocatalysts with potential applications[J]. International Journal of Biological Macromolecules, 2022, 208: 748-759. |
43 | ZHAO Junxin, MA Maomao, YAN Xianghui, et al. Immobilization of lipase on β-cyclodextrin grafted and aminopropyl-functionalized chitosan/Fe3O4 magnetic nanocomposites: An innovative approach to fruity flavor esters esterification[J]. Food Chemistry, 2022, 366: 130616. |
44 | KHOOBI M, KHALILVAND-SEDAGHEH M, RAMAZANI A, et al. Synthesis of polyethyleneimine (PEI) and β-cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(2): 375-384. |
45 | RIOS N S, NETO D M A, DOS SANTOS J C S, et al. Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support[J]. International Journal of Biological Macromolecules, 2019, 134: 936-945. |
46 | RABBANI G, AHMAD E, AHMAD A, et al. Structural features, temperature adaptation and industrial applications of microbial lipases from psychrophilic, mesophilic and thermophilic origins[J]. International Journal of Biological Macromolecules, 2023, 225: 822-839. |
47 | MEHDI W A, MEHDE A A, ÖZACAR M, et al. Characterization and immobilization of protease and lipase on chitin-starch material as a novel matrix[J]. International Journal of Biological Macromolecules, 2018, 117: 947-958. |
48 | KHAN M F, KUNDU D, HAZRA C, et al. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation[J]. International Journal of Biological Macromolecules, 2019, 136: 66-82. |
49 | ZHANG Huaxia, LIU Tianshu, ZHU Yawei, et al. Lipases immobilized on the modified polyporous magnetic cellulose support as an efficient and recyclable catalyst for biodiesel production from Yellow horn seed oil[J]. Renewable Energy, 2020, 145: 1246-1254. |
50 | OTARI S V, PATEL S K S, KALIA V C, et al. One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction[J]. Bioresource Technology, 2020, 302: 122887. |
51 | ZHANG Jun, CHEN Xiaoyan, Pengmei LYU, et al. Bionic-immobilized recombinant lipase obtained via bio-silicification and its catalytic performance in biodiesel production[J]. Fuel, 2021, 304: 121594. |
52 | MIAO Changlin, YANG Lingmei, WANG Zhongming, et al. Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production[J]. Fuel, 2018, 224: 774-782. |
53 | ABDULMALEK S A, LI Kai, WANG Jianhua, et al. Enhanced performance of Rhizopus oryzae lipase immobilized onto a hybrid-nanocomposite matrix and its application for biodiesel production under the assistance of ultrasonic technique[J]. Fuel Processing Technology, 2022, 232: 107274. |
[1] | 王璧琮, 潘大伟, 谢锐, 巨晓洁, 刘壮, 汪伟, 褚良银. 复合酶@ZIF-8的制备及其黑米花青素提取性能[J]. 化工进展, 2024, 43(3): 1403-1411. |
[2] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[3] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[4] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[5] | 金鑫, 李玉姗, 解青青, 王梦雨, 夏星帆, 杨朝合. 多孔材料催化丙酮缩甘油合成研究进展[J]. 化工进展, 2023, 42(2): 731-743. |
[6] | 秦振芳, 廖日红, 马伟芳. 吸收-微藻法固定燃气电厂低浓度CO2同步产油技术研究进展[J]. 化工进展, 2023, 42(1): 94-106. |
[7] | 孟令玎, 毛梦雷, 廖奇勇, 孟子晖, 刘文芳. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
[8] | 赵建兵, 杨丹, 舒原草, 朱俊波, 普仕萍, 宋晓丹, 刘守庆, 柴希娟, 李雪梅. Na2CO3/CF固体碱对菜籽油酯交换反应的催化性能[J]. 化工进展, 2022, 41(7): 3608-3614. |
[9] | 邹鹏程, 金光远, 李臻峰, 宋春芳, 韩太柏, 祝玉莲. 一种具有模式搅拌的微波反应釜内多物理场特性分析[J]. 化工进展, 2022, 41(5): 2301-2310. |
[10] | 唐婷, 周文凤, 王志, 朱晨杰, 许敬亮, 庄伟, 应汉杰, 欧阳平凯. 多酶共固定化技术在糖类催化中的研究进展[J]. 化工进展, 2022, 41(5): 2636-2648. |
[11] | 张彦, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 负载酶@ZIF-8复合物的聚合物微颗粒可控制备[J]. 化工进展, 2022, 41(4): 2022-2028. |
[12] | 毛梦雷, 孙丹阳, 孟子晖, 刘文芳. 氧化石墨烯和过渡金属碳/氮化合物固定化酶[J]. 化工进展, 2022, 41(4): 1941-1955. |
[13] | 马鑫, 王霜, 李法社, 张逸水, 蒋上. 生物柴油雾化特性仿真模拟及实验研究[J]. 化工进展, 2022, 41(2): 655-665. |
[14] | 孟子豪, 李青云, 刘幽燕, 林东亮, 唐爱星. 单相体系中MOF固定化脂肪酶催化柠檬烯环氧化[J]. 化工进展, 2022, 41(12): 6540-6548. |
[15] | 代静新, 宋伟, 陈修来, 刘立明, 吴静. ZIF-8-戊二醛固定化细胞生产α-酮戊二酸[J]. 化工进展, 2022, 41(12): 6522-6530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |