1 |
FAN Xiangchen, CHEN Ruidong, CHEN Lele, et al. Enhancement of alpha-ketoglutaric acid production from L-glutamic acid by high-cell-density cultivation[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 126: 10-17.
|
2 |
WANG Yaping, RAO Ben, YAN Hong, et al. High-level expression of L-glutamate oxidase in Pichia pastoris using multi-copy expression strains and high cell density cultivation[J]. Protein Expression and Purification, 2017, 129: 108-114.
|
3 |
宋辉, 张文宇, 王鹏举, 等. L-谷氨酸氧化酶与CBD的融合表达及其在微晶纤维素上固定化分析[J]. 生物工程学报, 2016, 32(10): 1348-1361.
|
|
SONG Hui, ZHANG Wenyu, WANG Pengju, et al. Analysis of immobilized L-glutamate oxidase fused with cellulose binding domain on microcrystalline cellulose[J]. Chinese Journal of Biotechnology, 2016, 32(10): 1348-1361.
|
4 |
于爽, 迟乃玉, 张庆芳. L-谷氨酸氧化酶的研究进展[J]. 中国酿造, 2017, 36(10): 9-12.
|
|
YU Shuang, CHI Naiyu, ZHANG Qingfang. Research progress on L-glutamate oxidase[J]. China Brewing, 2017, 36(10): 9-12.
|
5 |
NIU Panqing, DONG Xiaoxiang, WANG Yuancai, et al. Enzymatic production of α-ketoglutaric acid from L-glutamic acid via L-glutamate oxidase[J]. Journal of Biotechnology, 2014, 179: 56-62.
|
6 |
LIU Qingdai, MA Xiaoqian, CHENG Haijiao, et al. Co-expression of L-glutamate oxidase and catalase in Escherichia coli to produce α-ketoglutaric acid by whole-cell biocatalyst[J]. Biotechnology Letters, 2017, 39(6): 913-919.
|
7 |
LU Yuchi, CHEN Yan, WANG Qingling, et al. Organic-inorganic hybrid nanocomposites: a novel way to immobilize L-glutamate oxidase with manganese phosphate[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(5): 1686-1694.
|
8 |
夏欢, 卢滇楠, 戈钧, 等. 纳米结构酶催化剂研究进展[J]. 化工学报, 2021, 72(12): 6086-6092.
|
|
XIA Huan, LU Diannan, GE Jun, et al. Advances in nanostructured enzyme catalysts[J]. CIESC Journal, 2021, 72(12): 6086-6092.
|
9 |
孙帆, 宿玲恰, 张康, 等. D-阿洛酮糖3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
|
|
SUN Fan, SU Lingqia, ZHANG Kang, et al. D-psicose 3-epimerase gene overexpression in bacillus subtilis and immobilization of cells[J]. China Biotechnology, 2018, 38(7): 83-88.
|
10 |
高豪, 陆家声, 章文明, 等. 材料介导细胞固定化技术在生物发酵中的应用[J]. 化工进展, 2021, 40(7): 3923-3931.
|
|
GAO Hao, LU Jiasheng, ZHANG Wenming, et al. Application of material-mediated cell immobilization technology in biological fermentation[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3923-3931.
|
11 |
彭春燕, 刘天翔, 高育慧, 等. 微生物固定化载体材料的最新研究进展[J]. 现代化工, 2021, 41(6): 55-59, 64.
|
|
PENG Chunyan, LIU Tianxiang, GAO Yuhui, et al. Latest advances on carrier materials in microbial immobilization[J]. Modern Chemical Industry, 2021, 41(6): 55-59, 64.
|
12 |
陈孝鹏, 沈炜, 王亚军. 固定化细胞催化合成6-氰基-(3R, 5R)-二羟基己酸叔丁酯工艺研究[J]. 化学反应工程与工艺, 2017, 33(3): 236-242.
|
|
CHEN Xiaopeng, SHEN Wei, WANG Yajun. Biocatalytic process of t-butyl 6-cyano-(3R, 5R)-dihydroxylhexanoate by immobilized cells[J]. Chemical Reaction Engineering and Technology, 2017, 33(3): 236-242.
|
13 |
李力, 王亚平, 饶犇, 等. 重组L-谷氨酸氧化酶固定化细胞的制备[J]. 湖北农业科学, 2019, 58(17): 132-135.
|
|
LI Li, WANG Yaping, RAO Ben, et al. Preparation of recombinant L-glutamate oxidase immobilized cells[J]. Hubei Agricultural Sciences, 2019, 58(17): 132-135.
|
14 |
SANTOS Jose Cleiton S dos, BARBOSA Oveimar, ORTIZ Claudia, et al. Importance of the support properties for immobilization or purification of enzymes[J]. ChemCatChem, 2015, 7(16): 2413-2432.
|
15 |
QIU Shuai, WANG Yajun, YU Han, et al. t-Butyl 6-cyano-(3R, 5R)-dihydroxyhexanoate synthesis via asymmetric reduction by immobilized cells of carbonyl reductase and glucose dehydrogenase co-expression E. coli [J]. Process Biochemistry, 2019, 80: 43-51.
|
16 |
SALIBA Daniel, AMMAR Manal, RAMMAL Moustafa, et al. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives[J]. Journal of the American Chemical Society, 2018, 140(5): 1812-1823.
|
17 |
MENG Jiashen, NIU Chaojiang, XU Linhan, et al. General oriented formation of carbon nanotubes from metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(24): 8212-8221.
|
18 |
THANH Mai Thi, THIEN Tran Vinh, DU Pham Dinh, et al. Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8[J]. Journal of Porous Materials, 2018, 25(3): 857-869.
|
19 |
LI Wanbin, ZHANG Yufan, XU Zehai, et al. Assembly of MOF microcapsules with size-selective permeability on cell walls[J]. Angewandte Chemie International Edition, 2016, 55(3): 955-959.
|
20 |
HE Hongming, HAN Haobo, SHI Hui, et al. Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24517-24524.
|
21 |
LIAN Xizhen, FANG Yu, JOSEPH Elizabeth, et al. Enzyme-MOF (metal-organic framework) composites[J]. Chemical Society Reviews, 2017, 46(11): 3386-3401.
|
22 |
CHEN Guosheng, HUANG Siming, KOU Xiaoxue, et al. A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal–organic frameworks[J]. Angewandte Chemie International Edition, 2019, 58(5): 1463-1467.
|
23 |
SUN Chao, CHANG Lin, HOU Ke, et al. Encapsulation of live cells by metal-organic frameworks for viability protection[J]. Science China Materials, 2019, 62(6): 885-891.
|
24 |
WANG Yajun, CHEN Xiaopeng, SHEN Wei, et al. Chiral diol t-butyl 6-cyano-(3R, 5R)-dihydroxylhexanoate synthesis catalyzed by immobilized cells of carbonyl reductase and glucose dehydrogenase co-expression E. coli [J]. Biochemical Engineering Journal, 2017, 128: 54-62.
|
25 |
ZAJKOSKA Petra, ROSENBERG Michal, HEATH Rachel, et al. Immobilised whole-cell recombinant monoamine oxidase biocatalysis[J]. Applied Microbiology and Biotechnology, 2015, 99(3): 1229-1236.
|
26 |
邹树平, 颜海蔚, 胡忠策, 等. 固定化重组大肠杆菌细胞催化合成(R)-环氧氯丙烷[J]. 现代化工, 2013, 33(7): 55-59.
|
|
ZOU Shuping, YAN Haiwei, HU Zhongce, et al. Synthesis of (R)-epichlorohydrin catalyzed by immobilized recombinant escherichia coli cells[J]. Modern Chemical Industry, 2013, 33(7): 55-59.
|
27 |
SINGH Rajendra, PANDEY Deepak, DEVI Neena, et al. Bench scale production of butyramide using free and immobilized cells of Bacillus sp. APB-6[J]. Bioprocess and Biosystems Engineering, 2018, 41(8): 1225-1232.
|
28 |
WU Jing, FAN Xiangchen, LIU Jia, et al. Promoter engineering of cascade biocatalysis for α-ketoglutaric acid production by coexpressing L-glutamate oxidase and catalase[J]. Applied Microbiology and Biotechnology, 2018, 102(11): 4755-4764.
|
29 |
HU Yingli, DAI Lingmei, LIU Dehua, et al. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase[J]. Green Chemistry, 2018, 20(19): 4500-4506.
|
30 |
NADAR Shamraja S, RATHOD Virendra K. Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound[J]. Enzyme and Microbial Technology, 2018, 108: 11-20.
|
31 |
卓武燕, 邱艳, 翟好英. 罗丹明B分光光度法测定药物中微量锌[J]. 内江师范学院学报, 2011, 26(8): 51-53.
|
|
ZHUO Wuyan, QIU Yan, ZHAI Haoying. Study on spectrophotometric determination of zinc(Ⅱ) in medicaments[J]. Journal of Neijiang Normal University, 2011, 26(8): 51-53.
|
32 |
CHEN Guosheng, HUANG Siming, KOU Xiaoxue, et al. Embedding functional biomacromolecules within peptide-directed metal–organic framework (MOF) nanoarchitectures enables activity enhancement[J]. Angewandte Chemie International Edition, 2020, 59(33): 13947-13954.
|