1 |
TRASATTI S. Water electrolysis: Who first?[J]. Journal of Electroanalytical Chemistry, 1999, 476(1): 90-91.
|
2 |
MATSUOKA Masaya, KITANO Masaaki, TAKEUCHI Masato, et al. Photocatalysis for new energy production[J]. Catalysis Today, 2007, 122(1/2): 51-61.
|
3 |
SOLIMAN Moustafa Aly, ZAKARIA Maryam. Kinetics of photolysis and photocatalytic oxidation of ammonium sulfite for hydrogen production[J]. Journal of King Saud University: Engineering Sciences. .
|
4 |
WERNER Håkan A F, BAUER Rupert. Hydrogen production by water photolysis using nitrilotriacetic acid as electron donor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 97(3): 171-173.
|
5 |
COUTANCEAU Christophe, BARANTON Stève, AUDICHON Thomas. Hydrogen production from water electrolysis[M]//Hydrogen Electrochemical Production. Amsterdam: Elsevier, 2018: 17-62.
|
6 |
KRISHNAN Subramani, FAIRLIE Matthew, ANDRES Philipp, et al. Power to gas (H2): Alkaline electrolysis[M]//Technological learning in the transition to a low-carbon energy system. Amsterdam: Elsevier, 2020: 165-187.
|
7 |
GRIGORIEV S A, FATEEV V N, BESSARABOV D G, et al. Current status, research trends, and challenges in water electrolysis science and technology[J]. International Journal of Hydrogen Energy, 2020, 45(49): 26036-26058.
|
8 |
LAKE Jack R, SOTO Álvaro Moreno, VARANASI Kripa K. Impact of bubbles on electrochemically active surface area of microtextured gas-evolving electrodes[J]. Langmuir, 2022, 38(10): 3276-3283.
|
9 |
KOU Tianyi, WANG Shanwen, SHI Rongpei, et al. Water splitting: Periodic porous 3D electrodes mitigate gas bubble traffic during alkaline water electrolysis at high current densities[J]. Advanced Energy Materials, 2020, 10(46): 2002955.
|
10 |
FUJIMURA Tatsuki, HIKIMA Wakana, FUKUNAKA Yasuhiro, et al. Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes[J]. Electrochemistry Communications, 2019, 101: 43-46.
|
11 |
IWATA Ryuichi, ZHANG Lenan, WILKE Kyle L, et al. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting[J]. Joule, 2021, 5(4): 887-900.
|
12 |
Justin C BUI, DAVIS Jonathan T, ESPOSITO Daniel V. 3D-printed electrodes for membraneless water electrolysis[J]. Sustainable Energy & Fuels, 2020, 4(1): 213-225.
|
13 |
VANDER LINDE Peter, PABLO Peñas-López, ÁLVARO Moreno Soto, et al. Gas bubble evolution on microstructured silicon substrates[J]. Energy & Environmental Science, 2018, 11(12): 3452-3462.
|
14 |
ZHAO Xu, REN Hang, LUO Long. Gas bubbles in electrochemical gas evolution reactions[J]. Langmuir, 2019, 35(16): 5392-5408.
|
15 |
ANGULO Andrea, VAN DER LINDE Peter, GARDENIERS Han, et al. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.
|
16 |
JI Seong Min, KUMAR Anuj. Cellulose-derived nanostructures as sustainable biomass for supercapacitors: A review[J]. Polymers, 2022, 14(1): 169.
|
17 |
XU Ting, DU Haishun, LIU Huayu, et al. Advanced nanocellulose-based composites for flexible functional energy storage devices[J]. Advanced Materials, 2021, 33(48): 2101368.
|
18 |
WANG Lili, WANG Kang, LOU Zheng, et al. Plant-based modular building blocks for “green” electronic skins[J]. Advanced Functional Materials, 2018, 28(51): 1804510.
|
19 |
WAN Lei, XU Ziang, XU Qin, et al. Overall design of novel 3D-ordered MEA with drastically enhanced mass transport for alkaline electrolyzers[J]. Energy & Environmental Science, 2022, 15(5): 1882-1892.
|
20 |
DAVIS Jonathan T, QI Ji, FAN Xinran, et al. Floating membraneless PV-electrolyzer based on buoyancy-driven product separation[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1224-1238.
|
21 |
HUANG Birou, WANG Xiaochen, LI Wenzheng, et al. Accelerating gas escape in anion exchange membrane water electrolysis by gas diffusion layers with hierarchical grid gradients[J]. Angewandte Chemie International Edition, 2023, 62(33): e202304230.
|
22 |
ZHANG Chunhui, XU Zhe, HAN Nana, et al. Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer[J]. Science Advances, 2023, 9(3): eadd6978.
|
23 |
PENG Ci, ZHAO Luhaibo, TANG Zhiyong. Enhanced production of hydrogen from alkaline electrolysis by microbubbles removal on bionic electrode[J]. Physics of Fluids, 2023, 35(2): 022001.
|
24 |
ZOU Yajun, XIAO Bing, SHI Jianwen, et al. 3D hierarchical heterostructure assembled by NiFe LDH/(NiFe)S x on biomass-derived hollow carbon microtubes as bifunctional electrocatalysts for overall water splitting[J]. Electrochimica Acta, 2020, 348: 136339.
|
25 |
VOGT H. The concentration overpotential of gas evolving electrodes as a multiple problem of mass transfer[J]. Journal of the Electrochemical Society, 1990, 137(4): 1179-1184.
|
26 |
KEMPLER Paul A, CORIDAN Robert H, LEWIS Nathan S. Effects of bubbles on the electrochemical behavior of hydrogen-evolving Si microwire arrays oriented against gravity[J]. Energy & Environmental Science, 2020, 13(6): 1808-1817.
|
27 |
LEISTRA James A, SIDES Paul J. Voltage components at gas evolving electrodes[J]. Journal of the Electrochemical Society, 1987, 134(10): 2442-2446.
|
28 |
DENG Xintao, YANG Fuyuan, LI Yangyang, et al. Quantitative study on gas evolution effects under large current density in zero-gap alkaline water electrolyzers[J]. Journal of Power Sources, 2023, 555: 232378.
|
29 |
QIAN K, CHEN Z D, Chen J J J. Bubble coverage and bubble resistance using cells with horizontal electrode[J]. Journal of Applied Electrochemistry, 1998, 28(10): 1141-1145.
|
30 |
KIUCHI Daisuke, MATSUSHIMA Hisayoshi, FUKUNAKA Yasuhiro, et al. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity[J]. Journal of the Electrochemical Society, 2006, 153(8): E138.
|
31 |
VOGT H, H-D KLEINSCHRODT. Ohmic interelectrode voltage drop in alumina reduction cells[J]. Journal of Applied Electrochemistry, 2003, 33(7): 563-569.
|
32 |
HINE F, YASUDA M, NAKAMURA R, et al. Hydrodynamic studies of bubble effects on the IR-drops in a vertical rectangular cell[J]. Journal of the Electrochemical Society, 1975, 122(9): 1185-1190.
|
33 |
KREYSA G, KUHN M. Modelling of gas evolving electrolysis cells. Ⅰ. The gas voidage problem[J]. Journal of Applied Electrochemistry, 1985, 15(4): 517-526.
|