1 |
CHI Jun, YU Hongmei. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
|
2 |
王艳辉, 吴迪镛, 迟建. 氢能及制氢的应用技术现状及发展趋势[J]. 化工进展, 2001, 20(1): 6-8.
|
|
WANG Yanhui, WU Diyong, CHI Jian. The status and development current of hydrogen energy and its application technology[J]. Chemical Industry and Engineering Progress, 2001, 20(1): 6-8.
|
3 |
CHEN Minjie, ZHANG Daixue, LI Dan, et al. All-around coating of CoNi nanoalloy using a hierarchically porous carbon derived from bimetallic MOFs for highly efficient hydrolytic dehydrogenation of ammonia-borane[J]. New Journal of Chemistry, 2020, 44(7): 3021-3027.
|
4 |
AKIHIKO Kudo, YUGO Miseki. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278.
|
5 |
CAO Liming, LU David, ZHONG Dichang, et al. Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting[J]. Coordination Chemistry Reviews, 2020, 407: 213156.
|
6 |
ZOU Xiaoxin, ZHANG Yu. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180.
|
7 |
WANG Jing, XU Fan, JIN Haiyan, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications[J]. Advanced Materials, 2017, 29(14): 1605838.
|
8 |
LI Saisai, SUN Jianrui, GUAN Jingqi. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2021, 42(4): 511-556
|
9 |
VIJAYAKUMAR E, RAMAKRISHNAN S, SATHISKUMAR C, et al. MOF-derived CoP-nitrogen-doped nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries[J]. Chemical Engineering Journal, 2022, 428: 131115.
|
10 |
赵鹬, 周飞, 张伟伟, 等. 磷化钴材料在电化学能源领域的研究进展[J]. 化工进展, 2021, 40(4): 2188-2205.
|
|
ZHAO Yu, ZHOU Fei, ZHANG Weiwei, et al. Research progress of cobalt phosphide materials in the field of electrochemical energy[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2188-2205.
|
11 |
CAO Liming, ZHANG Jia, DING Liwen, et al. Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting[J]. Journal of Energy Chemistry, 2022, 68: 494-520.
|
12 |
LIU Teng, LI Peng, YAO Na, et al. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction[J]. Angewandte Chemie, 2019, 131(14): 4727-4732.
|
13 |
LI Yuanjian, ZHANG Bao, WANG Wenyu, et al. Selective-etching of MOF toward hierarchical porous Mo-doped CoP/N-doped carbon nanosheet arrays for efficient hydrogen evolution at all pH values[J]. Chemical Engineering Journal, 2021, 405: 126981.
|
14 |
SHI Jinghui, QIU Fen, YUAN Wenbo, et al. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting[J]. Chemical Engineering Journal, 2021, 403: 126312.
|
15 |
WANG Yanzhong, LI Sha, CHEN You, et al. 3D hierarchical MOF-derived CoP@N-doped carbon composite foam for efficient hydrogen evolution reaction[J]. Applied Surface Science, 2020, 505: 144503.
|
16 |
DUAN Donghong, FENG Jiarong, LIU Shibin, et al. MOF-derived cobalt phosphide as highly efficient electrocatalysts for hydrogen evolution reaction[J]. Journal of Electroanalytical Chemistry, 2021, 892: 115300.
|
17 |
AHAMAD Tansir, NAUSHAD Mu, ALSHEHRI Saad M. Fabrication of CoP based nanocomposite as an electrocatalyst for oxygen-and hydrogen-evolving energy conversion reactions[J]. Materials Letters, 2020, 278: 128351.
|
18 |
ZOU Lianli, KITTA Mitsunori, HONG Jinhua, et al. Fabrication of a spherical superstructure of carbon nanorods[J]. Advanced Materials, 2019, 31(24): 1-7.
|
19 |
PU Chun, LI Ruidong, CHANG Ganggang, et al. Hierarchical ZrO2@N-doped carbon nano-networks anchored ultrafine Pd nanoparticles for highly efficient catalytic hydrogenation[J]. Science China Chemistry, 2022, 65(8): 1661-1669.
|
20 |
JIAO Long, ZHANG Rui, WAN Gang, et al. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts[J]. Nature Communications, 2020, 11: 2831.
|
21 |
LEE J, KIM J, HYEON T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials, 2006, 18(16): 2073-2094.
|
22 |
BENZIGAR Mercy R, SIDDULU Naidu Talapaneni, STALIN Joseph, et al. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8): 2680-2721.
|
23 |
CAI Guorui, YAN Peng, ZHANG Liangliang, et al. Metal-organic framework-based hierarchically porous materials: Synthesis and applications[J]. Chemical Reviews, 2021, 121(20): 12278-12326.
|
24 |
HUANG Yuanbiao, LIANG Jun, WANG Xusheng, et al. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions[J]. Chemical Society Reviews, 2017, 46(1): 126-157.
|
25 |
MA Xiaochen, PU Chun, ZHANG Yuexing, et al. Confined Pd clusters with dynamic structure for highly efficient Cascade-type catalysis[J]. Chemical Engineering Journal, 2022, 429: 132128.
|
26 |
XIAO Yueyang, LIU Xiaolong, CHANG Ganggang, et al. Construction of a functionalized hierarchical pore metal-organic framework via a palladium-reduction induced strategy[J]. Nanoscale, 2020, 12(11): 6250-6255.
|
27 |
CHANG Ganggang, MA Xiaochen, ZHANG Yuexing, et al. Construction of hierarchical metal-organic frameworks by competitive coordination strategy for highly efficient CO2 conversion[J]. Advanced Materials, 2019, 31(52): 1904969.
|
28 |
陈丹, 杨蓉, 张卫华, 等. 有机金属骨架材料在电化学储能领域中的研究进展[J]. 化工进展, 2018, 37(2): 628-636.
|
|
CHEN Dan, YANG Rong, ZHANG Weihua, et al. Research progress of MOFs-based materials in electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 628-636.
|
29 |
KE Shanchao, CHANG Ganggang, HU Zhiyi, et al. Integrated-trifunctional single catalyst with fine spatial distribution via stepwise anchored strategy for multistep autotandem catalysis[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2): 966-976.
|
30 |
WU Jian, CHANG Ganggang, PENG Youqing, et al. Spatial acid-base-Pd triple-sites of a hierarchical core-shell structure for three-step tandem reaction[J]. Chemical Communications, 2020, 56(46): 6297-6300.
|
31 |
ZHANG Zhiwei, JIN Huihui, ZHU Jiawei, et al. 3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance[J]. Carbon, 2020, 161: 502-509.
|
32 |
LI Jiaxin, CHANG Ganggang, TIAN Ge, et al. Near-linear controllable synthesis of mesoporosity in hierarchical UiO-66 by template-free nucleation-competition[J]. Advanced Functional Materials, 2021, 31(30): 2102868.
|
33 |
谭雨薇, 龙涛, 宋雪婷, 等. 基于金属有机骨架的电催化产氢研究进展[J]. 应用化工, 2019, 48(9): 2226-2230.
|
|
TAN Yuwei, LONG Tao, SONG Xueting, et al. Research progress on electrocatalytic hydrogen production based on metal-organic framework[J]. Applied Chemical Industry, 2019, 48(9): 2226-2230.
|
34 |
TANG Jing, YAMAUCHI Yusuke. MOF morphologies in control[J]. Nature Chemistry, 2016, 8(7): 638-639.
|
35 |
DANG Song, ZHU Qilong, XU Qiang. Nanomaterials derived from metal-organic frameworks[J]. Nature Reviews Materials, 2018, 3: 17075.
|
36 |
WANG Qi, ASTRUC Didier. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chemical Reviews, 2020, 120(2): 1438-1511.
|
37 |
PAN Zhaorui, PAN Na, CHEN Liang, et al. Flower-like MOF-derived Co-N-doped carbon composite with remarkable activity and durability for electrochemical hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30075-30083.
|
38 |
YOU Bo, JIANG Nan, SHENG Meili, et al. High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks[J]. Chemistry of Materials, 2015, 27(22): 7636-7642.
|
39 |
WU Yulin, LI Xiaofang, WEI Yongsheng, et al. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction[J]. Advanced Materials, 2021, 33(12): 2006965.
|