化工进展 ›› 2024, Vol. 43 ›› Issue (1): 437-446.DOI: 10.16085/j.issn.1000-6613.2023-0250
• 材料科学与技术 • 上一篇
收稿日期:
2023-02-24
修回日期:
2023-04-27
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
王晓东
作者简介:
杜翠花(1997—),女,硕士研究生,研究方向为气体分离膜。E-mail:2638266544@qq.com。
基金资助:
DU Cuihua1(), ZHANG Xi1, WANG Xiaodong1(), HUANG Wei1, ZHOU Ming2
Received:
2023-02-24
Revised:
2023-04-27
Online:
2024-01-20
Published:
2024-02-05
Contact:
WANG Xiaodong
摘要:
为回收聚丙烯制备尾气中的丙烯,采用本实验室独创的浸渍-旋转法在聚醚嵌段共聚酰胺(PEBA2533)膜表面沉积聚多巴胺(PDA)膜层制备出对C3H6具有更强亲和性的PDA@PEBA2533膜。利用扫描电子显微镜(SEM)和X射线衍射(XRD)对PDA颗粒和膜进行表征。考察了PDA沉积时间对膜形貌、结构以及分离性能的影响,也考察了温度和压力等操作条件对膜分离性能的影响。探索了PDA@PEBA2533膜对不同C3H6浓度的C3H6/N2混合气的分离效果以及膜的长时间分离稳定性。结果表明,沉积PDA于PEBA2533膜表面有效提高了膜的分离性能。当沉积时间不小于24h时,可得到连续的PDA膜层,随沉积时间的增加,膜层逐渐增厚,气体渗透速率先增大后减小,选择性持续上升,沉积24h所制备的膜分离性能最佳。增大操作温度和压力,膜对C3H6和N2的渗透速率均增大,C3H6/N2选择性则降低。增大混合气中C3H6浓度,膜对C3H6的渗透速率和选择性均呈现先上升后下降的趋势。在所制备的分离性能最好的PDA@PEBA2533膜上,0.2MPa时,对C3H6体积分数为20%的混合气,温度从0℃提高到50℃,C3H6渗透速率从8.25GPU增加到71.42GPU,C3H6/N2选择性从22.92降低至10.14。在130h的气体分离实验中,该膜表现出良好的稳定性。该膜与其他分离C3H6/N2混合气膜相比具有一定的优势。
中图分类号:
杜翠花, 张茜, 王晓东, 黄伟, 周明. 用于C3H6/N2分离的PDA@PEBA2533膜的制备[J]. 化工进展, 2024, 43(1): 437-446.
DU Cuihua, ZHANG Xi, WANG Xiaodong, HUANG Wei, ZHOU Ming. Preparation of PDA@PEBA2533 membranes for C3H6/N2 separation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 437-446.
膜 | 时间/h | C3H6渗透 速率/GPU | N2渗透速率 /GPU | αC3H6/N2 |
---|---|---|---|---|
PDA@PEBA2533-0 | 0 | 20.82 | 1.91 | 10.90 |
PDA@PEBA2533-12 | 12 | 22.94 | 1.82 | 12.60 |
PDA@PEBA2533-24 | 24 | 21.27 | 1.39 | 15.30 |
PDA@PEBA2533-48 | 48 | 19.37 | 1.20 | 16.14 |
PDA@PEBA2533-72 | 72 | 18.84 | 1.13 | 16.67 |
PDA/PEBA2533-12 | 12 | 21.72 | 1.91 | 11.37 |
PDA/PEBA2533-24 | 24 | 22.84 | 1.89 | 12.08 |
PDA/PEBA2533-48 | 48 | 27.29 | 2.55 | 10.70 |
PDA/PEBA2533-72 | 72 | 32.27 | 3.58 | 9.01 |
表1 PDA改性膜对C3H6/N2混合气分离性能的影响
膜 | 时间/h | C3H6渗透 速率/GPU | N2渗透速率 /GPU | αC3H6/N2 |
---|---|---|---|---|
PDA@PEBA2533-0 | 0 | 20.82 | 1.91 | 10.90 |
PDA@PEBA2533-12 | 12 | 22.94 | 1.82 | 12.60 |
PDA@PEBA2533-24 | 24 | 21.27 | 1.39 | 15.30 |
PDA@PEBA2533-48 | 48 | 19.37 | 1.20 | 16.14 |
PDA@PEBA2533-72 | 72 | 18.84 | 1.13 | 16.67 |
PDA/PEBA2533-12 | 12 | 21.72 | 1.91 | 11.37 |
PDA/PEBA2533-24 | 24 | 22.84 | 1.89 | 12.08 |
PDA/PEBA2533-48 | 48 | 27.29 | 2.55 | 10.70 |
PDA/PEBA2533-72 | 72 | 32.27 | 3.58 | 9.01 |
压力/MPa | 温度/℃ | C3H6渗透速率/GPU | N2渗透速率/GPU | αC3H6/N2 |
---|---|---|---|---|
0.2 | 0 | 8.25 | 0.36 | 22.92 |
0.2 | 20 | 21.27 | 1.39 | 15.30 |
0.2 | 30 | 31.46 | 2.43 | 12.95 |
0.2 | 40 | 46.40 | 3.88 | 11.96 |
0.2 | 50 | 71.42 | 7.04 | 10.14 |
表2 操作温度对PDA@PEBA2533-24膜分离C3H6/N2混合气的影响
压力/MPa | 温度/℃ | C3H6渗透速率/GPU | N2渗透速率/GPU | αC3H6/N2 |
---|---|---|---|---|
0.2 | 0 | 8.25 | 0.36 | 22.92 |
0.2 | 20 | 21.27 | 1.39 | 15.30 |
0.2 | 30 | 31.46 | 2.43 | 12.95 |
0.2 | 40 | 46.40 | 3.88 | 11.96 |
0.2 | 50 | 71.42 | 7.04 | 10.14 |
温度/℃ | 压力/MPa | C3H6渗透速率/GPU | N2渗透速率/GPU | αC3H6/N2 |
---|---|---|---|---|
20 | 0.2 | 21.27 | 1.39 | 15.30 |
20 | 0.3 | 38.16 | 2.88 | 13.25 |
20 | 0.4 | 47.28 | 3.69 | 12.81 |
20 | 0.5 | 51.37 | 4.08 | 12.59 |
表3 操作压力对PDA@PEBA2533-24膜分离C3H6/N2混合气的影响
温度/℃ | 压力/MPa | C3H6渗透速率/GPU | N2渗透速率/GPU | αC3H6/N2 |
---|---|---|---|---|
20 | 0.2 | 21.27 | 1.39 | 15.30 |
20 | 0.3 | 38.16 | 2.88 | 13.25 |
20 | 0.4 | 47.28 | 3.69 | 12.81 |
20 | 0.5 | 51.37 | 4.08 | 12.59 |
温度/℃ | 压力/MPa | C3H6体积分数/% | C3H6渗透速率/GPU | N2渗透 速率/GPU | αC3H6/N2 |
---|---|---|---|---|---|
0 | 0.2 | 10 | 0.34 | 0.21 | 1.62 |
0 | 0.2 | 20 | 8.25 | 0.36 | 22.92 |
0 | 0.2 | 40 | 46.11 | 0.45 | 102.47 |
0 | 0.2 | 60 | 44.77 | 0.56 | 79.95 |
0 | 0.2 | 90 | 40.01 | 1.19 | 33.62 |
表4 PDA@PEBA2533-24膜对不同C3H6浓度的C3H6/N2的分离效果
温度/℃ | 压力/MPa | C3H6体积分数/% | C3H6渗透速率/GPU | N2渗透 速率/GPU | αC3H6/N2 |
---|---|---|---|---|---|
0 | 0.2 | 10 | 0.34 | 0.21 | 1.62 |
0 | 0.2 | 20 | 8.25 | 0.36 | 22.92 |
0 | 0.2 | 40 | 46.11 | 0.45 | 102.47 |
0 | 0.2 | 60 | 44.77 | 0.56 | 79.95 |
0 | 0.2 | 90 | 40.01 | 1.19 | 33.62 |
膜材料 | 压力/MPa | 温度/℃ | 膜厚/μm | 原料气组成(C3H6/N2) | 渗透速率/GPU | 气体选择性(αC3H6/N2) | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
C3H6 | N2 | |||||||||
PDMS | 0.275 | 22 | 0.45 | 纯气体 | 218 | 25 | 8.72① | [ | ||
PEBA2533 | 0.17 | 25 | 55 | 纯气体 | 5.45 | 0.14 | 38.93① | [ | ||
PDA@PDMS | 0.20 | 20 | 0.9 | 20/80 | 92 | 3.45 | 26.67② | [ | ||
SiO2/PDMS | — | 0 | 2~5 | 15/85 | 36 | 4.93 | 7.30② | [ | ||
MIL-101/PDMS | 0.20 | 20 | 25 | 20/80 | 220 | 10.58 | 20.79② | [ | ||
PEBA2533 | 0.791 | 25 | 3~4 | 20/80 | 75 | 2.7 | 27.78② | [ | ||
PDA@PEBA2533 | 0.20 | 0 | 40 | 20/80 | 8.25 | 0.36 | 22.92② | 本工作 | ||
PDA@PEBA2533 | 0.20 | 20 | 40 | 20/80 | 21.27 | 1.39 | 15.30② | 本工作 |
表5 不同膜对丙烯和氮气渗透性能对比
膜材料 | 压力/MPa | 温度/℃ | 膜厚/μm | 原料气组成(C3H6/N2) | 渗透速率/GPU | 气体选择性(αC3H6/N2) | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
C3H6 | N2 | |||||||||
PDMS | 0.275 | 22 | 0.45 | 纯气体 | 218 | 25 | 8.72① | [ | ||
PEBA2533 | 0.17 | 25 | 55 | 纯气体 | 5.45 | 0.14 | 38.93① | [ | ||
PDA@PDMS | 0.20 | 20 | 0.9 | 20/80 | 92 | 3.45 | 26.67② | [ | ||
SiO2/PDMS | — | 0 | 2~5 | 15/85 | 36 | 4.93 | 7.30② | [ | ||
MIL-101/PDMS | 0.20 | 20 | 25 | 20/80 | 220 | 10.58 | 20.79② | [ | ||
PEBA2533 | 0.791 | 25 | 3~4 | 20/80 | 75 | 2.7 | 27.78② | [ | ||
PDA@PEBA2533 | 0.20 | 0 | 40 | 20/80 | 8.25 | 0.36 | 22.92② | 本工作 | ||
PDA@PEBA2533 | 0.20 | 20 | 40 | 20/80 | 21.27 | 1.39 | 15.30② | 本工作 |
1 | CHEN Sai, CHANG Xin, SUN Guodong, et al. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies[J]. Chemical Society Reviews, 2021, 50(5): 3315-3354. |
2 | JACOBS M, GOTTSCHLICH D, BUEHNER F. Monomer recovery in polyolefin plants using membranes-An update[C]// 1999 Petrochemical World Review. Houston, Texas: DeWitt & Company Incorporated, 1999. |
3 | GIANNAKOPOULOS I G, NIKOLAKIS V. Recovery of hydrocarbons from mixtures containing C3H6, C3H8 and N2 using NaX membranes[J]. Journal of Membrane Science, 2007, 305(1/2): 332-337. |
4 | KIM Haesook, KIM Hyun-Gi, KIM Sooyeon, et al. PDMS-silica composite membranes with silane coupling for propylene separation[J]. Journal of Membrane Science, 2009, 344(1/2): 211-218. |
5 | SAHA D, COMROE M, KRISHNA R, et al. Separation of propylene from propane and nitrogen by Ag(Ⅰ)-doped nanoporous carbons obtained from hydrothermally treated lignin[J]. Diamond and Related Materials, 2022, 121: 108750. |
6 | 张国瑞, 王新剑, 田正昕, 等. 连续法聚丙烯装置产生的聚丙烯尾气的处理工艺: CN101357291A[P]. 2009-02-04. |
ZHANG Guorui, WANG Xinjian, TIAN Zhengxin, et al. Treatment technique of polypropylene tail-gas generated by continuous-method polypropylene device: CN101357291A[P]. 2009-02-04. | |
7 | BAKER R W, JACOBS M. Improve monomer recovery from polyolefin resin degassing:Petrochemical developments[J]. Hydrocarbon Processing, 1996, 75(3): 49-51. |
8 | CHOI Seung-Hak, KIM Jeong-Hoon, LEE Soo-Bok. Sorption and permeation behaviors of a series of olefins and nitrogen through PDMS membranes[J]. Journal of Membrane Science, 2007, 299(1/2): 54-62. |
9 | WANG Yuxiang, Shing Bo PEH, ZHAO Dan. Alternatives to cryogenic distillation: Advanced porous materials in adsorptive light olefin/paraffin separations[J]. Small, 2019, 15(25): 1900058. |
10 | WECHSUNG A, ASPELUND A, GUNDERSEN T, et al. Synthesis of heat exchanger networks at subambient conditions with compression and expansion of process streams[J]. AIChE Journal, 2011, 57(8): 2090-2108. |
11 | 包崇龙, 沈建华, 王帅, 等. 双膨胀自深冷分离技术应用于PP装置尾气回收[J]. 广州化工, 2020, 48(11): 157-159. |
BAO Chonglong, SHEN Jianhua, WANG Shuai, et al. Application of double-expansion self-cryogenic separation technology in vent gas recovery of polypropylene plant[J]. Guangzhou Chemical Industry, 2020, 48(11): 157-159. | |
12 | LIU L, CHAKMA A, FENG X S. Propylene separation from nitrogen by poly(ether block amide) composite membranes[J]. Journal of Membrane Science, 2006, 279(1/2): 645-654. |
13 | JIANG X, KUMAR A. Performance of silicone-coated polymeric membrane in separation of hydrocarbons and nitrogen mixtures[J]. Journal of Membrane Science, 2005, 254(1/2): 179-188. |
14 | FANG Manquan, ZHANG Haotian, CHEN Jinxun, et al. A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation[J]. Journal of Membrane Science, 2016, 499: 290-300. |
15 | BUCKWALTER D J, DENNIS J M, LONG T E. Amide-containing segmented copolymers[J]. Progress in Polymer Science, 2015, 45: 1-22. |
16 | EMBAYE A S, MARTÍNEZ-IZQUIERDO L, MALANKOWSKA M, et al. Poly(ether-block-amide) copolymer membranes in CO2 separation applications[J]. Energy & Fuels, 2021, 35(21): 17085-17102. |
17 | 陈丙晨, 徐积斌, 万超, 等. 用于CO2/CH4分离的cPIM-1/ZIF-8混合基质膜的制备[J]. 化工进展, 2020, 39(9): 3518-3524. |
CHEN Bingchen, XU Jibin, WAN Chao, et al. ZIF-8 filled carboxylated polymer of intrinsic microporosity membranes for CO2/CH4 separation[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3518-3524. | |
18 | LIU Li, CHAKMA Amit, FENG Xianshe. Sorption, diffusion, and permeation of light olefins in poly(ether block amide) membranes[J]. Chemical Engineering Science, 2006, 61(18): 6142-6153. |
19 | ZHANG Xi, YAN Mengyu, FENG Xianshe, et al. Ethylene/propylene separation using mixed matrix membranes of poly (ether block amide)/nano-zeolite (NaY or NaA)[J]. Korean Journal of Chemical Engineering, 2021, 38(3): 576-586. |
20 | ZHANG Xi, WANG Xiaodong, HUANG Wei. Separation of a C3H6/C2H4 mixture using Pebax® 2533/PEG600 blend membranes[J]. Chinese Journal of Chemical Engineering, 2023, 54: 192-198. |
21 | ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
22 | AYYAVOO J, NGUYEN T P N, B-M JUN, et al. Protection of polymeric membranes with antifouling surfacing via surface modifications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506: 190-201. |
23 | AKBARI A, DERIKVANDI Z, MOJALLALI ROSTAMI S M. Influence of chitosan coating on the separation performance, morphology and anti-fouling properties of the polyamide nanofiltration membranes[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 268-276. |
24 | TRIPATHI B P, DUBEY N C, STAMM M. Polyethylene glycol cross-linked sulfonated polyethersulfone based filtration membranes with improved antifouling tendency[J]. Journal of Membrane Science, 2014, 453: 263-274. |
25 | RYU J H, MESSERSMITH P B, LEE Haeshin. Polydopamine surface chemistry: A decade of discovery[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7523-7540. |
26 | 山林娜, 杨振生, 燕国飞, 等. 基于多巴胺亲水改性下Janus膜的制备及其油水乳液分离[J]. 化工进展, 2022, 41(12): 6500-6510. |
SHAN Linna, YANG Zhensheng, YAN Guofei, et al. Asymmetric Janus membranes based on hydrophilic modification of dopamine for efficient oil/water separation[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6500-6510. | |
27 | 蒋金泓. 基于多巴胺自聚-组装行为的聚合物分离膜表面修饰与性能研究[D]. 杭州: 浙江大学, 2014. |
JIANG Jinhong. Surface tailoring of polymeric separation membranes based on the self-polymerization and assembly of dopamine[D]. Hangzhou: Zhejiang University, 2014. | |
28 | LI Panyuan, WANG Zhi, LI Wen, et al. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15481-15493. |
29 | ZHAO Zhijuan, SHI Shaoyuan, CAO Hongbin, et al. Layer-by-layer assembly of anion exchange membrane by electrodeposition of polyelectrolytes for improved antifouling performance[J]. Journal of Membrane Science, 2018, 558: 1-8. |
30 | Jiwoong HEO, CHOI Moonhyun, CHANG Jungyun, et al. Highly permeable graphene oxide/polyelectrolytes hybrid thin films for enhanced CO2/N2 separation performance[J]. Scientific Reports, 2017, 7: 456. |
31 | LUO Jing, CHEN Weiwei, SONG Hongwei, et al. Fabrication of hierarchical layer-by-layer membrane as the photocatalytic degradation of foulants and effective mitigation of membrane fouling for wastewater treatment[J]. Science of the Total Environment, 2020, 699: 134398. |
32 | KIM Onyu, Jaewook NAM. Confinement effects in dip coating[J]. Journal of Fluid Mechanics, 2017, 827: 1-30. |
33 | FAUSTINI M, LOUIS B, ALBOUY P A, et al. Preparation of sol-gel films by dip-coating in extreme conditions[J]. The Journal of Physical Chemistry C, 2010, 114(17): 7637-7645. |
34 | JANG Jaeyoung, Sooji NAM, Kyuhyun IM, et al. Highly crystalline soluble acene crystal arrays for organic transistors: Mechanism of crystal growth during dip-coating[J]. Advanced Functional Materials, 2012, 22(5): 1005-1014. |
35 | WANG Xiaodong, SHI Fang, GAO Xiaoxia, et al. A sol-gel dip/spin coating method to prepare titanium oxide films[J]. Thin Solid Films, 2013, 548: 34-39. |
36 | CAO Lujie, Fucong LYU, LIU Ying, et al. A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries[J]. Chemical Communications, 2015, 51(21): 4364-4367. |
37 | SHEVATE R, KUMAR M, KARUNAKARAN M, et al. Polydopamine/cysteine surface modified isoporous membranes with self-cleaning properties[J]. Journal of Membrane Science, 2017, 529: 185-194. |
38 | 熊征蓉, 董莉, 刘向东, 等. PDA/PVDF紫外线屏蔽复合膜的制备及性能表征[J]. 高等学校化学学报, 2019, 40(4): 849-854. |
XIONG Zhengrong, DONG Li, LIU Xiangdong, et al. Preparation and properties characterization of PDA/PVDF UV shielding composite membranes[J]. Chemical Journal of Chinese Universities, 2019, 40(4): 849-854. | |
39 | 宁梦佳, 代岩, 郗元, 等. Cu(Qc)2强化Pebax混合基质膜分离CO2 [J]. 化工进展, 2021, 40(10): 5652-5659. |
NING Mengjia, DAI Yan, XI Yuan, et al. CO2 separation of Pebax-based mixed matrix membranes promoted by Cu(Qc)2 [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5652-5659. | |
40 | DROUDIAN A, LOKESH M, YOUN Seul Ki, et al. Gas concentration polarization and transport mechanism transition near thin polymeric membranes[J]. Journal of Membrane Science, 2018, 567: 1-6. |
41 | ZHANG Xinru, ZHANG Tao, WANG Yonghong, et al. Mixed-matrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation[J]. Journal of Membrane Science, 2018, 560: 38-46. |
42 | FANG Manquan, ZHANG Guanghui, LIU Yuting, et al. Exploiting giant-pore systems of nanosized MIL-101 in PDMS matrix for facilitated reverse-selective hydrocarbon transport[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1511-1522. |
[1] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[2] | 容凡丁, 丁泽相, 曹义风, 陈俐吭, 杨柳, 申福星, 杨启炜, 鲍宗必. 离子液体强化不饱和键差异化合物分离的研究进展[J]. 化工进展, 2024, 43(1): 198-214. |
[3] | 张梁, 马骥, 贺高红, 姜晓滨, 肖武. 膜调控的头孢呋辛钠溶析-冷却耦合结晶成核介稳区测定及分析[J]. 化工进展, 2024, 43(1): 260-268. |
[4] | 钟丁磊, 黄铎, 应翔, 邱守添, 汪勇. 熔纺-选择性溶胀制备嵌段共聚物多通道中空纤维膜[J]. 化工进展, 2024, 43(1): 269-278. |
[5] | 李蕴琪, 谢函霏, 崔丽瑞, 卢善富. 图案化微米线阵列Nafion膜制备及燃料电池性能[J]. 化工进展, 2024, 43(1): 320-327. |
[6] | 孙崇正, 李玉星, 许洁, 韩辉, 宋光春, 卢晓. 浮式氢能储运过程中FLH2通道管外降膜流动的海上适应性强化机理[J]. 化工进展, 2024, 43(1): 338-352. |
[7] | 裴文艺, 陈子阳, 赵萌, 姜红, 陈日志. 预润湿对Janus陶瓷膜制备及布气性能的影响[J]. 化工进展, 2024, 43(1): 353-363. |
[8] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[9] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[10] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[11] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[12] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[13] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[14] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[15] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |