化工进展 ›› 2024, Vol. 43 ›› Issue (1): 390-399.DOI: 10.16085/j.issn.1000-6613.2023-0221
• 能源加工与技术 • 上一篇
收稿日期:
2023-02-20
修回日期:
2023-04-27
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
王文
作者简介:
封德彬(1997—),男,硕士研究生,研究方向为氢储运。E-mail:debinfeng@sjtu.edu.cn。
基金资助:
FENG Debin1(), WANG Wen1(), MA Fanhua2
Received:
2023-02-20
Revised:
2023-04-27
Online:
2024-01-20
Published:
2024-02-05
Contact:
WANG Wen
摘要:
掺氢天然气(HCNG)输送是利用现有天然气管线实现氢气长距离运输的一种可行方案,天然气中因氢气的加入使得输运气体的物性发生明显变化,从而对管道的输运特性造成一定影响。本文对掺氢混合气的流动及换热过程进行了分析建模,对天然气掺氢管道的运行特性进行了计算分析,并在计算中使用物性快速计算公式代替BWRS方程进行物性求解以提高计算效率。根据计算结果,氢气与天然气混合气体的黏度、密度、体积热值和焦耳-汤姆逊效应系数随着掺氢比例的增加而下降,比热容和压缩因子随掺氢比例的增加而增加;在管道运行中,管输体积流量随掺氢比例的增加而上升,管道压降和管道管存随之下降,管道的能量流量先下降后在大掺氢比后略有回升;管道能量流量恒定时,管道出口压力先降低后略有升高;氢气的加入会削弱长输管线压降导致的温度降低;地面温度对于管输流量和能量流量影响较小。
中图分类号:
封德彬, 王文, 马凡华. 掺氢天然气的管道输运特性仿真与分析[J]. 化工进展, 2024, 43(1): 390-399.
FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399.
项目 | f(T, p, ρ)=0 | f(T, p, λ)=0 | f(T, p, cp )=0 | f(T, p, η)=0 |
---|---|---|---|---|
相对误差/% | 1.13 | 0.66 | 0.93 | 0.82 |
相对计算速度 | 18.18 | 19.23 | 17.54 | 18.52 |
表1 快速计算公式计算精度与速度对比
项目 | f(T, p, ρ)=0 | f(T, p, λ)=0 | f(T, p, cp )=0 | f(T, p, η)=0 |
---|---|---|---|---|
相对误差/% | 1.13 | 0.66 | 0.93 | 0.82 |
相对计算速度 | 18.18 | 19.23 | 17.54 | 18.52 |
参数 | 组分 | ||||||
---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | n-C4H10 | i-C4H10 | n-C5H12 | N2 | |
摩尔分数/% | 96.25 | 1.77 | 0.3 | 0.075 | 0.060 | 0.125 | 1.42 |
表2 天然气组成参数
参数 | 组分 | ||||||
---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | n-C4H10 | i-C4H10 | n-C5H12 | N2 | |
摩尔分数/% | 96.25 | 1.77 | 0.3 | 0.075 | 0.060 | 0.125 | 1.42 |
参数 | 管道① | 管道② | 管道③ | 管道④ |
---|---|---|---|---|
管段 | 西气东输二线干线 | 西气东输一线干线 | 冀宁联络线 | 兰州-银川联络线 |
管道规格mm×mm | ϕ1219×22 | ϕ1016×16.8 | ϕ711×8 | ϕ610×7.5 |
表3 典型长输管道参数
参数 | 管道① | 管道② | 管道③ | 管道④ |
---|---|---|---|---|
管段 | 西气东输二线干线 | 西气东输一线干线 | 冀宁联络线 | 兰州-银川联络线 |
管道规格mm×mm | ϕ1219×22 | ϕ1016×16.8 | ϕ711×8 | ϕ610×7.5 |
1 | 王燕涛, 李勇, 王大亮, 等. 基于DEA模型的风能资源利用效率评价研究——甘肃、吉林等25省区实证分析[J]. 科技管理研究, 2017, 37(8): 82-87. |
WANG Yantao, LI Yong, WANG Daliang, et al. Research on evaluation of wind energy utilization efficiency based on DEA model: An empirical analysis of Jilin and Gansu etc. 25 provincial regions[J]. Science and Technology Management Research, 2017, 37(8): 82-87. | |
2 | 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535. |
YAO Yubi, ZHENG Shaozhong, YANG Yang, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 524-535. | |
3 | 岳国君, 林海龙. 以生物质为原料的未来绿色氢能[J]. 化工进展, 2021, 40(8): 4678-4684. |
YUE Guojun, LIN Hailong, et al. Future green hydrogen energy from biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4678-4684. | |
4 | 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
ZHAO Yongzhi, MENG Bo, CHEN Linxin, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255. | |
5 | 张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. |
ZHANG Xuan, FAN Xinye, WU Zhenyu, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371. | |
6 | MELAINA M W, ANTONIA O, PENEV M. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues. [R]. United States: National Renewable Energy Lab, Golden, CO. 2013. |
7 | 吴嫦. 天然气掺混氢气使用的可行性研究[D]. 重庆: 重庆大学, 2018. |
WU Chang. Feasibility study on the use of natural gas mixed with hydrogen[D]. Chongqing: Chongqing University, 2018. | |
8 | ISAAC T. HyDeploy: The UK’s first hydrogen blending deployment project[J]. Clean Energy, 2019, 3(2): 114-125. |
9 | TIMMERBERG S, KALTSCHMITT M. Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines-Potentials and costs[J]. Applied Energy, 2019, 237: 795-809. |
10 | CERNIAUSKAS S, JOSE CHAVEZ JUNCO A, GRUBE T, et al. Options of natural gas pipeline reassignment for hydrogen: Cost assessment for a Germany case study[J]. International Journal of Hydrogen Energy, 2020, 45(21): 12095-12107. |
11 | 陈伟锋, 尚娟, 邢百汇, 等. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
CHEN Weifeng, SHANG Juan, XING Baihui, et al. Discussion on 10%as a safe ratio of hydrogen mixing into natural gas grids[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1487-1493. | |
12 | 国家市场监督管理总局,中国国家标准化管理委员会. 进入天然气长输管道的气体质量要求: [S]. 北京: 中国标准出版社, 2019. |
Standardization Administration of the People's Republic of China, Administration Standardization. Quality requirements for gases entering long-distance transportation gas pipeline: [S]. Beijing: Standards Press of China, 2019. | |
13 | 李敬法, 苏越, 张衡, 等. 掺氢天然气管道输送研究进展[J]. 天然气工业, 2021, 41(4): 137-152. |
LI Jingfa, SU Yue, ZHANG Heng, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas[J]. Natural Gas Industry, 2021, 41(4): 137-152. | |
14 | ALI ABD A, NAJI S Z, THIAN T C, et al. Evaluation of hydrogen concentration effect on the natural gas properties and flow performance[J]. International Journal of Hydrogen Energy, 2021, 46(1): 974-983. |
15 | LI Jingfa, SU Yue, YU Bo, et al. Influences of hydrogen blending on the joule-Thomson coefficient of natural gas[J]. ACS Omega, 2021, 6(26): 16722-16735. |
16 | STEEN M. Building a hydrogen infrastructure in the EU[M]// Compendium of Hydrogen Energy. Amsterdam: Elsevier, 2016: 267-292. |
17 | GUANDALINI G, COLBERTALDO P, CAMPANARI S. Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections[J]. Applied Energy, 2017, 185: 1712-1723. |
18 | BRYNOLF S, TALJEGARD M, GRAHN M, et al. Electrofuels for the transport sector: A review of production costs[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1887-1905. |
19 | SCHOUTEN J. Effect of H2-injection on the thermodynamic and transportation properties of natural gas[J]. International Journal of Hydrogen Energy, 2004, 29(11)1173-1180. |
20 | 黄明, 吴勇, 文习之, 等. 利用天然气管道掺混输送氢气的可行性分析[J]. 煤气与热力, 2013, 33(4): 39-42. |
HUANG Ming, WU Yong, WEN Xizhi, et al. Feasibility analysis of hydrogen transport in natural gas pipeline[J]. Gas & Heat, 2013, 33(4): 39-42. | |
21 | ZHANG Heng, LI Jingfa, SU Yue, et al. Effects of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network[J]. Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles, 2021, 76: 70. |
22 | 王玮, 王秋岩, 邓海全, 等. 天然气管道输送混氢天然气的可行性[J]. 天然气工业, 2020, 40(3)130-136. |
WANG Wei, WANG Qiuyan, DENG Haiquan, et al. Feasibility analysis on the transportation of hydrogen-natural gas mixtures in natural gas pipelines[J]. Natural Gas Industry, 2020, 40(3)130-136. | |
23 | 朱建鲁, 周慧, 李玉星, 等. 掺氢天然气输送管道设计动态模拟[J]. 天然气工业, 2021, 41(11): 132-142. |
ZHU Jianlu, ZHOU Hui, LI Yuxing, et al. Dynamic simulation of hydrogen-doped natural gas pipeline design[J]. Natural Gas Industry, 2021, 41(11): 132-142. | |
24 | STARLING K E. Fluid thermodynamic properties for light petroleum systems[M]. Houston: Gulf Pub. Co., 1973. |
25 | 吴玉国, 陈保东. BWRS方程在天然气物性计算中的应用[J]. 油气储运, 2003, 22(10): 16-21. |
WU Yuguo, CHEN Baodong. The application of BWRS equation in calculating the thermo-physical properties of natural gas[J]. Oil & Gas Storage and Transportation, 2003, 22(10): 16-21. | |
26 | DING Guoliang, WU Zhigang, LIU Jian, et al. An implicit curve-fitting method for fast calculation of thermal properties of pure and mixed refrigerants[J]. International Journal of Refrigeration, 2005, 28(6): 921-932. |
27 | 吴志刚, 丁国良. 制冷剂热力性质的快速计算Ⅰ. 计算方法[J]. 上海交通大学学报, 2006, 40(2): 297-300. |
WU Zhigang, DING Guoliang. The fast calculation of refrigerant thermodynamic properties: Ⅰ. Principle[J]. Journal of Shanghai Jiao Tong University, 2006, 40(2): 297-300. | |
28 | 赵丹, 吴志刚, 丁国良. 超临界区制冷剂热力性质快速计算方法[J]. 工程热物理学报, 2008, 29(10): 1645-1648. |
ZHAO Dan, WU Zhigang, DING Guoliang. Fast calculation method for supercritical refrigerant thermodynamic properties[J]. Journal of Engineering Thermophysics, 2008, 29(10): 1645-1648. | |
29 | 易冲冲, 王文, 卢超. 隐式拟合在天然气热力性质计算中的应用[J]. 油气储运, 2014, 33(3): 283-286. |
YI Chongchong, WANG Wen, LU Chao. Application of implicit curve-fitting in the calculation of thermodynamic property of natural gas[J]. Oil & Gas Storage and Transportation, 2014, 33(3): 283-286. | |
30 | 郑建国. 大型天然气管网仿真计算引擎的研究与实现[D]. 成都: 西南石油大学, 2012. |
ZHENG Jianguo. Research and implementation of simulation engine for large natural gas pipeline network[D]. Chengdu: Southwest Petroleum University, 2012. | |
31 | WANG Peng, YU Bo, DENG Yajun, et al. Comparison study on the accuracy and efficiency of the four forms of hydraulic equation of a natural gas pipeline based on linearized solution[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 235-244. |
32 | HELGAKER J F, YTREHUS T. Coupling between continuity/momentum and energy equation in 1D gas flow[J]. Energy Procedia, 2012, 26: 82-89. |
33 | 郑建国, 宋飞, 陈国群, 等. 大型天然气管道仿真软件RealPipe-Gas研发[J]. 油气储运, 2011, 30(9): 659-662. |
ZHENG Jianguo, SONG Fei, CHEN Guoqun, et al. Development of RealPipe-gas simulation software for large natural gas pipeline[J]. Oil & Gas Storage and Transportation, 2011, 30(9): 659-662. | |
34 | LUSKIN M. An approximation procedure for nonsymmetric, nonlinear hyperbolic systems with integral boundary conditions[J]. SIAM Journal on Numerical Analysis, 1979, 16(1): 145-164. |
35 | WANG Peng, AO Shangmin, YU Bo, et al. An efficiently decoupled implicit method for complex natural gas pipeline network simulation[J]. Energies, 2019, 12(8): 1516. |
36 | 王鹏. 复杂天然气管网快速准确稳健仿真方法研究及应用[D]. 北京: 中国石油大学(北京), 2016. |
WANG Peng. Research and application of fast, accurate and robust simulation method for complex natural gas pipeline network[D]. Beijing: China University of Petroleum (Beijing), 2016. | |
37 | 吴清松. 计算热物理引论[M]. 合肥: 中国科学技术大学出版社,2009. |
WU Qingsong. Introduction to computational thermophysics[M]. Hefei: University of Science and Technology of China Press, 2009. | |
38 | 张月庆. 天然气长输管道末段数值模拟及储气量研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
ZHANG Yueqing. Numerical simulation of the last section of long-distance natural gas pipeline and study on gas storage capacity[D]. Harbin: Harbin Institute of Technology, 2013. | |
39 | 向贵宝. 基于Aspen与Isight天然气长输管网的模拟与优化[D]. 天津: 天津大学, 2016. |
XIANG Guibao. Simulation and optimization of natural gas long-distance pipeline network based on aspen and isight[D]. Tianjin: Tianjin University, 2016. | |
40 | 罗德通, 万夫伟, 王海燕. 基于ANSYS的X80管线钢焊接数值模拟[J]. 焊管, 2014, 37(1): 18-21. |
LUO Detong, WAN Fuwei, WANG Haiyan. Welding numerical simulation of X80 pipeline steel based on ANSYS[J]. Welded Pipe and Tube, 2014, 37(1): 18-21. | |
41 | GONDAL I A. Hydrogen transportation by pipelines[M]// Compendium of Hydrogen Energy. Amsterdam: Elsevier, 2016: 301-322. |
42 | TABKHI F, AZZARO-PANTEL C, PIBOULEAU L, et al. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6222-6231. |
43 | 李玉星, 姚光镇. 输气管道设计与管理[M]. 2版. 青岛: 中国石油大学出版社, 2009. |
LI Yuxing, YAO Guangzhen. Design and management of gas transmission pipeline[M]. 2nd ed. Qingdao: China University of Petroleum Press, 2009. | |
44 | 肖杰. 枝状天然气管网调峰方案综合评价研究[D]. 成都: 西南石油大学, 2014. |
XIAO Jie. Study on comprehensive evaluation of peak shaving scheme of dendritic natural gas pipeline network[D]. Chengdu: Southwest Petroleum University, 2014. |
[1] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[2] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[3] | 王立华, 蔡苏杭, 江文涛, 罗倩, 罗勇, 陈建峰. 微纳尺度气液传质强化油品催化加氢反应[J]. 化工进展, 2024, 43(1): 19-33. |
[4] | 谢广烁, 张斯亮, 何松, 肖娟, 王斯民. 基于最佳预后元模型的颗粒污垢特性全局敏感性分析[J]. 化工进展, 2024, 43(1): 328-337. |
[5] | 孙崇正, 李玉星, 许洁, 韩辉, 宋光春, 卢晓. 浮式氢能储运过程中FLH2通道管外降膜流动的海上适应性强化机理[J]. 化工进展, 2024, 43(1): 338-352. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[8] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[9] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[10] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[11] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[12] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[13] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[14] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[15] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |