化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6383-6398.DOI: 10.16085/j.issn.1000-6613.2023-0140
• 材料科学与技术 • 上一篇
王成君1,2,3,4(), 汪林强5, 马晶1,2,3,4, 孟淑娟1,2,3,4, 段志英1,2,3,4, 孙初锋1,2,3,4, 申涛1,2,3,4, 苏琼1,2,3,4()
收稿日期:
2023-02-03
修回日期:
2023-05-05
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
苏琼
作者简介:
王成君(1985—),女,博士,副教授,研究方向为相变储能材料。E-mail:573728404@qq.com。
基金资助:
WANG Chengjun1,2,3,4(), WANG Linqiang5, MA Jing1,2,3,4, MENG Shujuan1,2,3,4, DUAN Zhiying1,2,3,4, SUN Chufeng1,2,3,4, SHEN Tao1,2,3,4, SU Qiong1,2,3,4()
Received:
2023-02-03
Revised:
2023-05-05
Online:
2023-12-25
Published:
2024-01-08
Contact:
SU Qiong
摘要:
相变材料(PCMs)在促进新能源开发和提高能源利用率中起着至关重要的作用,然而,单一有机相变材料的易泄漏、热导率低、光吸收弱等缺陷阻碍了其更广泛的应用和发展。为了解决这些瓶颈问题,提高热能的利用效率,具有优异性能的碳材料被用作载体材料封装相变材料构筑形状稳定、热性能增强的复合相变材料。本文结合相关理论对碳材料强化传热机理进行了探讨,重点综述了有机相变材料在不同类型碳基材料中的研究进展和面临的挑战,介绍了近年来碳基复合相变材料在热管理、能量转换与储存、智能可穿戴纺织品及红外响应材料等领域的应用进展。最后,基于理论、数值、模拟和实验方法的结合,展望了碳基复合相变材料在热能存储、传递、转化方面未来的研究方向及其先进的多功能化应用。
中图分类号:
王成君, 汪林强, 马晶, 孟淑娟, 段志英, 孙初锋, 申涛, 苏琼. 碳基复合相变材料的研究进展[J]. 化工进展, 2023, 42(12): 6383-6398.
WANG Chengjun, WANG Linqiang, MA Jing, MENG Shujuan, DUAN Zhiying, SUN Chufeng, SHEN Tao, SU Qiong. Research progress of carbon matrix composite phase change materials[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6383-6398.
碳材料 | 优点 | 缺点 |
---|---|---|
碳纳米管 | 负载高,导电率高,太阳能吸收能力强,转换效率高 | 制备工艺复杂,易团聚,成本高 |
碳纤维 | 负载率高,导电性好,成本低 | 易团聚 |
石墨 | 导电性高,成本低,力学性能好 | 制备工艺复杂 |
石墨烯/GO/rGO | 比表面积大,负载率高,高导电性,太阳能吸收能力强,转换效率高 | 制备工艺复杂,易团聚,成本高 |
MOF衍生炭 | 高孔隙率,比表面积大,孔结构可调,负载率高,转换效率高 | 高温易塌陷,制备工艺复杂,低热导率,成本高 |
生物质炭 | 原料来源广泛,绿色无污染,成本低 | 转化效率较低,热导率低 |
膨胀石墨 | 孔隙体积大,密度小,负载大,电导率高,成本低 | 膨胀系数大 |
碳气凝胶 | 形状稳定,孔隙率高,力学性能好 | 光热转化效率不高 |
表1 用于热能储存的各种碳材料的优缺点[16]
碳材料 | 优点 | 缺点 |
---|---|---|
碳纳米管 | 负载高,导电率高,太阳能吸收能力强,转换效率高 | 制备工艺复杂,易团聚,成本高 |
碳纤维 | 负载率高,导电性好,成本低 | 易团聚 |
石墨 | 导电性高,成本低,力学性能好 | 制备工艺复杂 |
石墨烯/GO/rGO | 比表面积大,负载率高,高导电性,太阳能吸收能力强,转换效率高 | 制备工艺复杂,易团聚,成本高 |
MOF衍生炭 | 高孔隙率,比表面积大,孔结构可调,负载率高,转换效率高 | 高温易塌陷,制备工艺复杂,低热导率,成本高 |
生物质炭 | 原料来源广泛,绿色无污染,成本低 | 转化效率较低,热导率低 |
膨胀石墨 | 孔隙体积大,密度小,负载大,电导率高,成本低 | 膨胀系数大 |
碳气凝胶 | 形状稳定,孔隙率高,力学性能好 | 光热转化效率不高 |
支撑材料 | 相变材料 | 负载率/% | 熔融温度/℃ | 熔融焓/J·g-1 | 凝固温度/℃ | 凝固焓/J·g-1 | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
SWCNT | PEG | 98 | 56.7 | 165.4 | 42.7 | 151.6 | 3.43 | [ |
MWCNTs | TDA ODA | 35.8 50.6 | 261.1 274 | 27.6 41.6 | 264.5 273.8 | 0.45 0.397 | [ | |
CNTs海绵 | PEG | 90 | 59.47 | 132.07 | 41.8 | 128.7 | 2.4 | [ |
CNTs阵列 | RT100 | 87.5 | 195.5 | 104.9 | 193.1 | 4.17(Y,X方向)/12.3(Z方向) | [ | |
CNS | 石蜡 | 40.8 | 248.8 | 32.9 | 247.7 | 1.85 | [ |
表2 基于碳纳米管的不同复合相变材料的热物性参数对比
支撑材料 | 相变材料 | 负载率/% | 熔融温度/℃ | 熔融焓/J·g-1 | 凝固温度/℃ | 凝固焓/J·g-1 | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
SWCNT | PEG | 98 | 56.7 | 165.4 | 42.7 | 151.6 | 3.43 | [ |
MWCNTs | TDA ODA | 35.8 50.6 | 261.1 274 | 27.6 41.6 | 264.5 273.8 | 0.45 0.397 | [ | |
CNTs海绵 | PEG | 90 | 59.47 | 132.07 | 41.8 | 128.7 | 2.4 | [ |
CNTs阵列 | RT100 | 87.5 | 195.5 | 104.9 | 193.1 | 4.17(Y,X方向)/12.3(Z方向) | [ | |
CNS | 石蜡 | 40.8 | 248.8 | 32.9 | 247.7 | 1.85 | [ |
支撑材料 | 相变材料 | 负载率/% | 熔融温度/℃ | 熔融焓/J·g-1 | 凝固温度/℃ | 凝固焓/J·g-1 | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
CNPS | PW | 38.1 | 147.9 | 51.5 | 153.1 | 1.42 | [ | |
rGO/GNPs | 1-十八醇 | 86.7 | 196.2 | 234.1 | 9.50 | [ | ||
GH | PW | 57.3 | 145.2 | 47.6 | 139.2 | 1.82 | [ | |
AGAS | PW | 179.8 | 104.9 | 184.5 | 8.87(纵向)/2.68(横向) | [ | ||
GCNT | PEG | 80 | 50.31 | 128.7 | 32.9 | [ |
表3 基于石墨烯的不同复合相变材料的热物性参数对比
支撑材料 | 相变材料 | 负载率/% | 熔融温度/℃ | 熔融焓/J·g-1 | 凝固温度/℃ | 凝固焓/J·g-1 | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
CNPS | PW | 38.1 | 147.9 | 51.5 | 153.1 | 1.42 | [ | |
rGO/GNPs | 1-十八醇 | 86.7 | 196.2 | 234.1 | 9.50 | [ | ||
GH | PW | 57.3 | 145.2 | 47.6 | 139.2 | 1.82 | [ | |
AGAS | PW | 179.8 | 104.9 | 184.5 | 8.87(纵向)/2.68(横向) | [ | ||
GCNT | PEG | 80 | 50.31 | 128.7 | 32.9 | [ |
支撑材料 | 比表面积/cm3·g-1 | 相变材料 | 负载率/% | 熔融温度/°C | 熔融焓/J·g-1 | 凝固温度/°C | 凝固焓/J·g-1 | 潜热保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Cr-MIL-101-NH2 | 1998 | SA | 70 | 71 | 120.5 | 56.92 | 117.59 | [ | |
HPC | 2551 | PEG | 92.5 | 60.03 | 162 | 98.2 | [ | ||
NPC-Al | 2193.5 | PEG | 55.4 | 168.3 | 89.3 | [ | |||
rGO@MOF-5-C | 2726.9 | SA | 90 | 71.6 | 168.7 | 62.4 | 162.2 | [ | |
MOF-5-PC/ZnO | 244.03 | PW | 90 | 80.37 | [ |
表4 MOF衍生碳基复合相变材料的热物性参数对比
支撑材料 | 比表面积/cm3·g-1 | 相变材料 | 负载率/% | 熔融温度/°C | 熔融焓/J·g-1 | 凝固温度/°C | 凝固焓/J·g-1 | 潜热保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Cr-MIL-101-NH2 | 1998 | SA | 70 | 71 | 120.5 | 56.92 | 117.59 | [ | |
HPC | 2551 | PEG | 92.5 | 60.03 | 162 | 98.2 | [ | ||
NPC-Al | 2193.5 | PEG | 55.4 | 168.3 | 89.3 | [ | |||
rGO@MOF-5-C | 2726.9 | SA | 90 | 71.6 | 168.7 | 62.4 | 162.2 | [ | |
MOF-5-PC/ZnO | 244.03 | PW | 90 | 80.37 | [ |
支撑材料 | 相变材料 | 负载率/% | 熔融温度/°C | 熔融焓/J·g-1 | 凝固温度/°C | 凝固焓/J·g-1 | 潜热保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
AGP | PA | 100 | 60.2 | 52.5 | 53 | 51.9 | 100 | [ |
SCGS | PEG | 60.3 | 63 | 104.7 | 36 | 99.9 | 98.6 | [ |
GPC | PW | 39.53 | 157 | 36.9 | 162.7 | 80.1 | [ | |
GPPS | PEG | 95.38 | 58.3 | 162.4 | 38.9 | 152.6 | 大于90 | [ |
芦苇杆生物炭 | PW | 93.45 | 68.67 | 141.47 | 36.29 | 144.12 | [ |
表5 生物质碳基复合相变材料的热物性参数对比
支撑材料 | 相变材料 | 负载率/% | 熔融温度/°C | 熔融焓/J·g-1 | 凝固温度/°C | 凝固焓/J·g-1 | 潜热保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
AGP | PA | 100 | 60.2 | 52.5 | 53 | 51.9 | 100 | [ |
SCGS | PEG | 60.3 | 63 | 104.7 | 36 | 99.9 | 98.6 | [ |
GPC | PW | 39.53 | 157 | 36.9 | 162.7 | 80.1 | [ | |
GPPS | PEG | 95.38 | 58.3 | 162.4 | 38.9 | 152.6 | 大于90 | [ |
芦苇杆生物炭 | PW | 93.45 | 68.67 | 141.47 | 36.29 | 144.12 | [ |
1 | ZHANG Shuai, FENG Daili, SHI Lei, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. |
2 | REN Huaying, TANG Miao, GUAN Baolu, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials, 2017, 29(38): 1702590. |
3 | 王成君, 苏琼, 段志英, 等. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494. |
WANG Chengjun, SU Qiong, DUAN Zhiying, et al. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494. | |
4 | WEI Yanhong, LI Juanjuan, SUN Furong, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858-1865. |
5 | LIU Lu, ZHANG Yu’ang, ZHANG Shufen, et al. Advanced phase change materials from natural perspectives: Structural design and functional applications[J]. Advanced Science, 2023, 10(22): 2207652. |
6 | CHINNASAMY Veerakumar, Jaehyeok HEO, JUNG Sungyong, et al. Shape stabilized phase change materials based on different support structures for thermal energy storage applications—A review[J]. Energy, 2023, 262: 125463. |
7 | YUAN K J, SHI J M, AFTAB W, et al. Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization[J]. Advanced Functional Materials, 2020, 30(8): 1904228. |
8 | LOEB A L. Thermal conductivity: VIII, A theory of thermal conductivity of porous materials[J]. Journal of the American Ceramic Society, 1954, 37(2): 96-99. |
9 | MALDOVAN Martin. Sound and heat revolutions in phononics[J]. Nature, 2013, 503(7475): 209-217. |
10 | MESCHKE M, GUICHARD W, PEKOLA J P. Single-mode heat conduction by photons[J]. Nature, 2006, 444(7116): 187-190. |
11 | VÖLKLEIN F, REITH H, CORNELIUS T W, et al. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires[J]. Nanotechnology, 2009, 20(32): 325706. |
12 | WU Shaofei, YAN Ting, KUAI Zihan, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. |
13 | 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179. |
LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. | |
14 | SHIN Sunmi, WANG Qingyang, LUO Jian, et al. Advanced materials for high-temperature thermal transport[J]. Advanced Functional Materials, 2020, 30(8): 1904815. |
15 | DONG Zhijun, SUN Bing, ZHU Hui, et al. A review of aligned carbon nanotube arrays and carbon/carbon composites: Fabrication, thermal conduction properties and applications in thermal management[J]. New Carbon Materials, 2021, 36(5): 873-892. |
16 | CHEN Xiao, CHENG Piao, TANG Zhaodi, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advanced Science, 2021, 8(9): 2001274. |
17 | GUO Xiaoxiao, CHENG Shujian, CAI Weiwei, et al. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties[J]. Materials & Design, 2021, 209: 109936. |
18 | GU Xiaokun, WEI Yujie, YIN Xiaobo, et al. Colloguium: Phononic thermal properties of two-dimensional materials[J]. Rev.Mod.Phys., 2018, 90(4): 041002. |
19 | PAPAGEORGIOU D G, KINLOCH I A, YOUNG R J. Mechanical properties of graphene and graphene-based nanocomposites[J]. Progress in Materials Science, 2017, 90: 75-127. |
20 | BORENSTEIN Arie, HANNA Ortal, ATTIAS Ran, et al. Carbon-based composite materials for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A, 2017, 5(25): 12653-12672. |
21 | TONG Xuan, LI Nianqi, ZENG Min, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 398-422. |
22 | DAI Hongjie. Carbon nanotubes: Opportunities and challenges[J]. Surface Science, 2002, 500(1/2/3): 218-241. |
23 | BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581. |
24 | BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616. |
25 | LI Min, MU Boyuan. Effect of different dimensional carbon materials on the properties and application of phase change materials: A review[J]. Applied Energy, 2019, 242: 695-715. |
26 | JARA A D, BETEMARIAM A, WOLDETINSAE G, et al. Purification, application and current market trend of natural graphite: A review[J]. International Journal of Mining Science and Technology, 2019, 29(5): 671-689. |
27 | STOLLER M D, SUNGJIN P, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. |
28 | BALANDIN A A, GHOSH Suchismita, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. |
29 | HUANG Xiubing, CHEN Xiao, LI Ang, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. |
30 | CHEN Xiao, GAO Hongyi, TANG Zhaodi, et al. Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization[J]. Energy & Environmental Science, 2020, 13(12): 4498-4535. |
31 | QIAN Tingting, LI Jinhong, FENG Wuwei, et al. Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material[J]. Energy Conversion and Management, 2017, 143: 96-108. |
32 | WANG Shuo, WANG Chengjun, CHEN Tao, et al. Fatty amines/oxidized multi-walled carbon nanotubes phase change composites with enhanced thermal properties[J]. Composites Communications, 2021, 25: 100749. |
33 | KUZIEL A W, DZIDO G, TURCZYN R, et al. Ultra-long carbon nanotube-paraffin composites of record thermal conductivity and high phase change enthalpy among paraffin-based heat storage materials[J]. Journal of Energy Storage, 2021, 36: 102396. |
34 | CAO Ruirui, CHEN Sai, WANG Yuzhou, et al. Functionalized carbon nanotubes as phase change materials with enhanced thermal, electrical conductivity, light-to-thermal, and electro-to-thermal performances[J]. Carbon, 2019, 149: 263-272. |
35 | AFTAB Waseem, MAHMOOD Asif, GUO Wenhan, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage[J]. Energy Storage Materials, 2019, 20: 401-409. |
36 | ZHANG Qi, LIU Jian. Anisotropic thermal conductivity and photodriven phase change composite based on RT100 infiltrated carbon nanotube array[J]. Solar Energy Materials and Solar Cells, 2019, 190: 1-5. |
37 | LI Ang, Guangtong HAI, CHENG Piao, et al. Molecular insights into the interaction mechanism between C18 phase change materials and methyl-modified carbon nanotubes[J]. Ceramics International, 2021, 47(16): 23564-23570. |
38 | LU Xiang, ZHENG Yongfeng, YANG Jinglei, et al. Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices[J]. Composites Part B: Engineering, 2020, 199: 108308. |
39 | CHEN Xiao, GAO Hongyi, Guangtong HAI, et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy[J]. Energy Storage Materials, 2020, 26: 129-137. |
40 | HUANG Xiang, ALVA Guruprasad, LIU Lingkun, et al. Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials[J]. Applied Energy, 2017, 200: 19-27. |
41 | NOMURA Takahiro, TABUCHI Kazuki, ZHU Chunyu, et al. High thermal conductivity phase change composite with percolating carbon fiber network[J]. Applied Energy, 2015, 154: 678-685. |
42 | WU Xinfeng, SHI Shanshan, WANG Ying, et al. Polyethylene glycol-calcium chloride phase change materials with high thermal conductivity and excellent shape stability by introducing three-dimensional carbon/carbon fiber felt[J]. ACS Omega, 2021, 6(48): 33033-33045. |
43 | LIU Zilu, WEI Huipeng, TANG Bingtao, et al. Novel light-driven CF/PEG/SiO2 composite phase change materials with high thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2018, 174: 538-544. |
44 | ZHANG Qiang, LUO Zhiling, GUO Qilin, et al. Preparation and thermal properties of short carbon fibers/erythritol phase change materials[J]. Energy Conversion and Management, 2017, 136: 220-228. |
45 | SHENG Nan, ZHU Ruijie, DONG Kaixin, et al. Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability[J]. Journal of Materials Chemistry A, 2019, 7(9): 4934-4940. |
46 | JIANG Zhao, OUYANG Ting, YANG Yang, et al. Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network[J]. Materials & Design, 2018, 143: 177-184. |
47 | WANG Chengjun, WANG Linqiang, LIANG Weidong, et al. Enhanced light-to-thermal conversion performance of all-carbon aerogels based form-stable phase change material composites[J]. Journal of Colloid and Interface Science, 2022, 605: 60-70. |
48 | WU Haiyan, LI Songtai, SHAO Yaowen, et al. Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability[J]. Chemical Engineering Journal, 2020, 379: 122373. |
49 | XUE Fei, JIN Xinzheng, WANG Wenyan, et al. Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials[J]. Nanoscale, 2020, 12(6): 4005-4017. |
50 | LIU Pengfei, AN Fei, LU Xiaoying, et al. Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels[J]. Composites Science and Technology, 2021, 201: 108492. |
51 | YANG Jie, QI Guoqiang, BAO Ruiying, et al. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials[J]. Energy Storage Materials, 2018, 13: 88-95. |
52 | KONG Qingqiang, JIA Hui, XIE Lijing, et al. Ultra-high temperature graphitization of three-dimensional large-sized graphene aerogel for the encapsulation of phase change materials[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106391. |
53 | MIN Peng, LIU Jie, LI Xiaofeng, et al. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion[J]. Advanced Functional Materials, 2018, 28(51): 1805365. |
54 | YU Zepei, FENG Yanhui, FENG Daili, et al. Thermal properties of three-dimensional hierarchical porous graphene foam-carbon nanotube hybrid structure composites with phase change materials[J]. Microporous and Mesoporous Materials, 2021, 312: 110781. |
55 | YAN Xiaoxin, ZHAO Haibo, FENG Yanhui, et al. Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials[J]. Composites Part B: Engineering, 2022, 228: 109435. |
56 | FENG Biao, FAN Liwu, ZENG Yi, et al. Atomistic insights into the effects of hydrogen bonds on the melting process and heat conduction of erythritol as a promising latent heat storage material[J]. International Journal of Thermal Sciences, 2019, 146: 106103. |
57 | LIN Yaxue, ZHU Chuqiao, ALVA Guruprasad, et al. Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage[J]. Applied Energy, 2018, 228: 1801-1809. |
58 | WANG Tingyu, JIANG Yan, HUANG Jin, et al. High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network[J]. Applied Energy, 2018, 218: 184-191. |
59 | KENISARIN M, MAHKAMOV K, KAHWASH F, et al. Enhancing thermal conductivity of paraffin wax 53-57℃ using expanded graphite[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110026. |
60 | MA Chao, WANG Jing, WU Yu, et al. Characterization and thermophysical properties of erythritol/expanded graphite as phase change material for thermal energy storage[J]. Journal of Energy Storage, 2022, 46: 103864. |
61 | WANG Chengjun, LIANG Weidong, TANG Zuoqun, et al. Enhanced light-thermal conversion efficiency of mixed clay base phase change composites for thermal energy storage[J]. Applied Clay Science, 2020, 189: 105535. |
62 | LI Dan, CHENG Xiaomin, LI Yuanyuan, et al. Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171: 142-149. |
63 | ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510. |
64 | WANG K, YAN T, ZHAO Y M, et al. Preparation and thermal properties of palmitic acid @ZnO/expanded graphite composite phase change material for heat storage[J]. Energy, 2022, 242: 122972. |
65 | LIN Xiangwei, ZHANG Xuelai, LIU Lu, et al. Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management[J]. Journal of Cleaner Production, 2022, 331: 130014. |
66 | LIU Changhui, SONG Yan, XU Ze, et al. Highly efficient thermal energy storage enabled by a hierarchical structured hypercrosslinked polymer/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119068. |
67 | DU Wenqing, FEI Hua, PAN Yucheng, et al. Development of capric acid-stearic acid-palmitic acid low-eutectic phase change material with expanded graphite for thermal energy storage[J]. Construction and Building Materials, 2022, 320: 126309. |
68 | WEN Ruilong, ZHU Shengbo, WU Maomao, et al. Design and preparation of Ag modified expanded graphite based composite phase change materials with enhanced thermal conductivity and light-to-thermal properties[J]. Journal of Energy Storage, 2021, 41: 102936. |
69 | Avia OHAYON-LAVI, LAVI Adi, ALATAWNA Amr, et al. Graphite-based shape-stabilized composites for phase change material applications[J]. Renewable Energy, 2021, 167: 580-590. |
70 | WU Si, LI Tingxian, TONG Zhen, et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting[J]. Advanced Materials, 2019, 31(49): e1905099. |
71 | WU Si, LI Tingxian, WU Minqiang, et al. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management[J]. Journal of Materials Chemistry A, 2020, 8(38): 20011-20020. |
72 | ZHAO Chengzhi, GUO Pan, SHENG Nan, et al. Cloth-derived anisotropic carbon scroll attached with 2D oriented graphite layers for supporting phase change material with efficient thermal storage[J]. Chemical Engineering Journal, 2023, 454: 139999. |
73 | LI Chuanchang, XIE Baoshan, CHEN Deliang, et al. Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage[J]. Energy, 2019, 166: 246-255. |
74 | LI Tingxian, WU Minqiang, WU Si, et al. Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage[J]. Nano Energy, 2021, 89: 106338. |
75 | LUAN Yi, YANG Ming, MA Qianqian, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4(20): 7641-7649. |
76 | LI W, THIRUMURUGAN A, BARTON P T, et al. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture[J]. Journal of the American Chemical Society, 2014, 136(22): 7801-7804. |
77 | TANG Jia, YANG Ming, DONG Wenjun, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J]. RSC Advances, 2016, 6(46): 40106-40114. |
78 | ATINAFU D G, DONG W, HOU C, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials[J]. Materials Today Energy, 2019, 12: 239-249. |
79 | ATINAFU D G, DONG W, HUANG X, et al. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity[J]. Applied Energy, 2018, 211: 1203-1215. |
80 | CHEN Xiao, GAO Hongyi, YANG Mu, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting[J]. Nano Energy, 2018, 49: 86-94. |
81 | LIN Yaxue, JIA Yuting, ALVA Guruprasad, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. |
82 | LI Ang, DONG Cheng, DONG Wenjun, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32093-32101. |
83 | LI A, WAN Y, GAO Y, et al. MOF-derived hierarchical carbon/ZnO hybrid synergistically boosts photothermal conversion and storage capability of phase change materials[J]. Materials Today Nano, 2022, 20: 100277. |
84 | WANG Ziting, ZHANG Maoqing, MA Weiting, et al. Application of carbon materials in aqueous zinc ion energy storage devices[J]. Small, 2021, 17(19): e2100219. |
85 | WANG Chengjun, LIANG Weidong, YANG Yueyue, et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage[J]. Renewable Energy, 2020, 153: 182-192. |
86 | LIN Fankai, LIU Xianjie, LENG Guoqing, et al. Grid structure phase change composites with effective solar/electro-thermal conversion for multi-functional thermal application[J]. Carbon, 2023, 201: 1001-1010. |
87 | ZHANG Qingfeng, XIA Tingfeng, ZHANG Qihan, et al. Biomass homogeneity reinforced carbon aerogels derived functional phase‐change materials for solar-thermal energy conversion and storage[J]. Energy & Environmental Materials, 2023, 6(1): 164-176. |
88 | ZHANG Xiaoguang, ZHANG Haojie, LIANG Qianwei, et al. Resource utilization of solid waste in the field of phase change thermal energy storage[J]. Journal of Energy Storage, 2023, 58: 106362. |
89 | LUO Yue, ZHANG Feng, LI Chongchong, et al. Biomass-based shape-stable phase change materials supported by garlic peel-derived porous carbon for thermal energy storage[J]. Journal of Energy Storage, 2022, 46: 103929. |
90 | HU Xinpeng, HUANG Haowei, HU Yubin, et al. Novel bio-based composite phase change materials with reduced graphene oxide-functionalized spent coffee grounds for efficient solar-to-thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 219: 110790. |
91 | UMAIR M M, ZHANG Y, ZHANG S, et al. Transforming waste cigarette filters into 3D carbon scaffolds for form-stable and energy conversion phase change materials[J]. Sustainable Energy & Fuels, 2020, 4(8): 4285-4292. |
92 | LI Shaowei, LI Jing, GENG Yang, et al. Shape-stable phase change composites based on carbonized waste pomelo peel for low-grade thermal energy storage[J]. Journal of Energy Storage, 2022, 47: 103556. |
93 | TIAN Shu, YANG Ruiying, PAN Zihan, et al. Anisotropic reed-stem-derived hierarchical porous biochars supported paraffin wax for efficient solar-thermal energy conversion and storage[J]. Journal of Energy Storage, 2022, 56: 106153. |
94 | ALSHAER W G, RADY M A, NADA S A, et al. An experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management of electronic devices under pulsed power modes[J]. Heat and Mass Transfer, 2017, 53(2): 569-579. |
95 | AZIZI Y, SADRAMELI S M. Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates[J]. Energy Conversion and Management, 2016, 128: 294-302. |
96 | ZHAO Xinbo, LI Chuanchang, BAI Kaihao, et al. Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage[J]. International Journal of Mining Science and Technology, 2022, 32(6): 1419-1428. |
97 | TAY N H S, LIU M, BELUSKO M, et al. Review on transportable phase change material in thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 264-277. |
98 | WU Qiang, YANG Lijun, WANG Xizhang, et al. From carbon-based nanotubes to nanocages for advanced energy conversion and storage[J]. Accounts of Chemical Research, 2017, 50(2): 435-444. |
99 | GAO Huan, BING Naici, XIE Huaqing, et al. Energy harvesting and storage blocks based on 3D oriented expanded graphite and stearic acid with high thermal conductivity for solar thermal application[J]. Energy, 2022, 254: 124198. |
100 | CAI Yuxuan, ZHANG Nan, CAO Xiaoling, et al. Ultra-light and flexible graphene aerogel-based form-stable phase change materials for energy conversion and energy storage[J]. Solar Energy Materials and Solar Cells, 2023, 252: 112176. |
101 | SONG Shaokun, AI Hong, ZHU Wanting, et al. Carbon aerogel based composite phase change material derived from kapok fiber: Exceptional microwave absorbility and efficient solar/magnetic to thermal energy storage performance[J]. Composites Part B: Engineering, 2021, 226: 109330. |
102 | LIU Lu, HU Jin, FAN Xiaoqiao, et al. Phase change materials with Fe3O4/GO three-dimensional network structure for acoustic-thermal energy conversion and management[J]. Chemical Engineering Journal, 2021, 426: 130789. |
103 | ZUO Xingwei, ZHANG Xueji, QU Lijun, et al. Smart fibers and textiles for personal thermal management in emerging wearable applications[J]. Advanced Materials Technologies, 2023, 8(6): 2201137. |
104 | LI Guangyong, HONG Guo, DONG Dapeng, et al. Multiresponsive graphene-aerogel-directed phase-change smart fibers[J]. Advanced Materials, 2018, 30(30): e1801754. |
105 | SUN Keyan, DONG Hongsheng, KOU Yan, et al. Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications[J]. Chemical Engineering Journal, 2021, 419: 129637. |
106 | LI Mei, WANG Yunming, ZHANG Yun, et al. Highly flexible and stretchable MWCNT/HEPCP nanocomposites with integrated near-IR, temperature and stress sensitivity for electronic skin[J]. Journal of Materials Chemistry C, 2018, 6(22): 5877-5887. |
107 | WANG Yunming, MI Hongyi, ZHENG Qifeng, et al. Flexible infrared responsive multi-walled carbon nanotube/form-stable phase change material nanocomposites[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21602-21609. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[5] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[6] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[7] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[8] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[9] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[10] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[11] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[12] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[13] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[14] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[15] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |