化工进展 ›› 2023, Vol. 42 ›› Issue (11): 6015-6030.DOI: 10.16085/j.issn.1000-6613.2022-2319
• 资源与环境化工 • 上一篇
收稿日期:
2022-12-15
修回日期:
2023-03-07
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
花儿
作者简介:
米泽豪(1998—),男,硕士研究生,研究方向为离子液体。E-mail:875501689@qq.com。
基金资助:
Received:
2022-12-15
Revised:
2023-03-07
Online:
2023-11-20
Published:
2023-12-15
Contact:
HUA Er
摘要:
开展了以质子化的正己胺(HHexam+)、己基乙二胺(HHexen+)及己基二亚乙基三胺(HHexdien+)为阳离子的TFSA [== (CF3SO2)2N-]型质子化离子液体(PILs),即[HHexam][TFSA]、[HHexen][TFSA]及[HHexdien][TFSA]型PILs吸收CO2的研究。首先,选择密度泛函理论,在M06-2X/6-311G(d, p)水平下,对上述3种PILs的构型进行优化,分别得到了其较稳定构象,结果显示,PILs的阳离子中N—H和阴离子中N原子间主要形成N—H···N型较强氢键。然后,分别利用其中最稳定构象,创建并优化PILs-nCO2构型,PILs和nCO2分子间主要形成N—H···O型弱或中等强度氢键。主要氢键部位N—H···O中N—H键的振动频率的变化值、电子密度值及二阶微扰能的计算结果显示,[HHexam][TFSA]、[HHexen][TFSA]及[HHexdien][TFSA]分别与2、3、4分子CO2结合时将不再形成氢键网络。采用COSMOtherm软件计算的CO2在3种PILs中的亨利常数(kPa)大小为[HHexam][TFSA] (1.91×104) > [HHexen][TFSA] (1.68×104) > [HHexdien][TFSA] (1.51×104),即3种PILs对CO2的溶解能力大小为极性头部具有3个氨基的[HHexdien][TFSA] > 2个氨基的[HHexen][TFSA] > 1个氨基的[HHexam][TFSA]。以上结果中可以看出,PILs结构中氨基数目的多少对其吸收CO2的能力有较显著影响,即随着PILs结构中氨基数目的增多,其对CO2的溶解能力随之增大。
中图分类号:
米泽豪, 花儿. 多元胺-TFSA型质子化离子液体吸收CO2的理论分析[J]. 化工进展, 2023, 42(11): 6015-6030.
MI Zehao, HUA Er. Theoretical analysis of CO2 absorption by polyamines-TFSA type protic ionic liquids[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6015-6030.
构型 | 化学键 | 振动频率ν/cm-1 | 频率变化值Δν/cm-1 |
---|---|---|---|
CO2 | 1C—2O | 1422 | — |
1C—3O | 1422 | — | |
[HHexam][TFSA] | 20N—21H | 3450 | — |
20N—22H | 2591 | — | |
20N—23H | 3563 | — | |
A4-1CO2 | 20N—21H | 3410 | 40 |
20N—22H | 2709 | -118 | |
A4-2CO2 | 20N—21H | 3430 | 20 |
20N—22H | 2825 | -234 | |
20N—23H | 3532 | 31 | |
A4-3CO2 | 20N—21H | 3421 | 29 |
20N—22H | 2985 | -394 | |
20N—23H | 3522 | 41 | |
[HHexen][TFSA] | 26N—27H | 3561 | — |
28N—30H | 3555 | — | |
28N—31H | 3429 | — | |
28N—29H | 2652 | — | |
B4-1CO2 | 28N—31H | 3424 | 5 |
28N—29H | 2760 | -108 | |
B4-2CO2 | 28N—30H | 3533 | 22 |
28N—29H | 2870 | -218 | |
B4-3CO2 | 28N—30H | 3534 | 21 |
28N—29H | 2980 | -328 | |
B4-4CO2 | 28N—30H | 3530 | 25 |
28N—29H | 3035 | -383 | |
[HHexdien][TFSA] | 36N—37H | 3450 | — |
18N—19H | 3527 | — | |
13N—14H | 3511 | — | |
36N—39H | 3450 | — | |
36N—38H | 2706 | — | |
C4-1CO2 | 36N—39H | 3414 | 36 |
36N—38H | 2852 | -147 | |
C4-2CO2 | 36N—39H | 3417 | 33 |
36N—38H | 2916 | -211 | |
C4-3CO2 | 36N—39H | 3421 | 29 |
36N—38H | 2932 | -226 | |
C4-4CO2 | 36N—39H | 3432 | 18 |
36N—38H | 3060 | -354 | |
C4-5CO2 | 36N—39H | 3436 | 14 |
36N—38H | 3206 | -500 |
表1 CO2、PILs及PILs-nCO2的较稳定构象的振动频率v及其变化值Δν
构型 | 化学键 | 振动频率ν/cm-1 | 频率变化值Δν/cm-1 |
---|---|---|---|
CO2 | 1C—2O | 1422 | — |
1C—3O | 1422 | — | |
[HHexam][TFSA] | 20N—21H | 3450 | — |
20N—22H | 2591 | — | |
20N—23H | 3563 | — | |
A4-1CO2 | 20N—21H | 3410 | 40 |
20N—22H | 2709 | -118 | |
A4-2CO2 | 20N—21H | 3430 | 20 |
20N—22H | 2825 | -234 | |
20N—23H | 3532 | 31 | |
A4-3CO2 | 20N—21H | 3421 | 29 |
20N—22H | 2985 | -394 | |
20N—23H | 3522 | 41 | |
[HHexen][TFSA] | 26N—27H | 3561 | — |
28N—30H | 3555 | — | |
28N—31H | 3429 | — | |
28N—29H | 2652 | — | |
B4-1CO2 | 28N—31H | 3424 | 5 |
28N—29H | 2760 | -108 | |
B4-2CO2 | 28N—30H | 3533 | 22 |
28N—29H | 2870 | -218 | |
B4-3CO2 | 28N—30H | 3534 | 21 |
28N—29H | 2980 | -328 | |
B4-4CO2 | 28N—30H | 3530 | 25 |
28N—29H | 3035 | -383 | |
[HHexdien][TFSA] | 36N—37H | 3450 | — |
18N—19H | 3527 | — | |
13N—14H | 3511 | — | |
36N—39H | 3450 | — | |
36N—38H | 2706 | — | |
C4-1CO2 | 36N—39H | 3414 | 36 |
36N—38H | 2852 | -147 | |
C4-2CO2 | 36N—39H | 3417 | 33 |
36N—38H | 2916 | -211 | |
C4-3CO2 | 36N—39H | 3421 | 29 |
36N—38H | 2932 | -226 | |
C4-4CO2 | 36N—39H | 3432 | 18 |
36N—38H | 3060 | -354 | |
C4-5CO2 | 36N—39H | 3436 | 14 |
36N—38H | 3206 | -500 |
构型 | 化学键 | 电荷分布值(电荷变化值)e | ||||
---|---|---|---|---|---|---|
20N | 21H | 22H | 23H | O | ||
CO2 | C—O | -0.518 | ||||
A4 | 20N—21H | -0.737 | 0.441 | |||
20N—22H | 0.485 | |||||
20N—23H | 0.413 | |||||
A4-1CO2 | 20N—21H···40O | -0.741 (-0.004) | 0.450 (+0.009) | -0.598 (-0.080) | ||
A4-2CO2 | 20N—21H···43O | -0.743 (-0.006) | 0.445 (+0.004) | -0.596 (-0.078) | ||
20N—23H···40O | 0.430 (+0.017) | -0.593 (-0.075) | ||||
A4-3CO2 | 20N—21H···40O | -0.741 (-0.004) | 0.449 (+0.008) | -0.592 (-0.074) | ||
20N—23H···47O | 0.436 (+0.023) | -0.571 (-0.053) |
表2 [HHexam][TFSA]-nCO2主要氢键部位原子上的NPA电荷分布值(括号中为结合CO2后的电荷变化值)
构型 | 化学键 | 电荷分布值(电荷变化值)e | ||||
---|---|---|---|---|---|---|
20N | 21H | 22H | 23H | O | ||
CO2 | C—O | -0.518 | ||||
A4 | 20N—21H | -0.737 | 0.441 | |||
20N—22H | 0.485 | |||||
20N—23H | 0.413 | |||||
A4-1CO2 | 20N—21H···40O | -0.741 (-0.004) | 0.450 (+0.009) | -0.598 (-0.080) | ||
A4-2CO2 | 20N—21H···43O | -0.743 (-0.006) | 0.445 (+0.004) | -0.596 (-0.078) | ||
20N—23H···40O | 0.430 (+0.017) | -0.593 (-0.075) | ||||
A4-3CO2 | 20N—21H···40O | -0.741 (-0.004) | 0.449 (+0.008) | -0.592 (-0.074) | ||
20N—23H···47O | 0.436 (+0.023) | -0.571 (-0.053) |
构型 | 化学键 | 电荷分布值(电荷变化值)e | |||||
---|---|---|---|---|---|---|---|
26N | 28N | 27H | 30H | 31H | O | ||
CO2 | C—O | -0.518 | |||||
B4 | 26N—27H | -0.689 | 0.357 | ||||
28N—29H | -0.740 | ||||||
28N—30H | 0.415 | ||||||
28N—31H | 0.441 | ||||||
B4-1CO2 | 28N—31H···49O | -0.744 (-0.004) | 0.449 (+0.008) | -0.599 (-0.081) | |||
B4-2CO2 | 28N—30H···49O | -0.746 (-0.006) | 0.436 (+0.021) | -0.596 (-0.078) | |||
28N—31H···52O | -0.746 (-0.006) | 0.441 | -0.600 (-0.082) | ||||
B4-3CO2 | 28N—30H···49O | -0.745 (-0.005) | 0.440 (+0.025) | -0.608 (-0.090) | |||
28N—30H···55O | -0.745 (-0.005) | 0.440 (+0.025) | -0.570 (-0.052) | ||||
28N—31H···51O | -0.745 (-0.005) | 0.443 (+0.028) | -0.596 (-0.078) | ||||
B4-4CO2 | 28N—30H···49O | -0.743 (-0.003) | 0.440 (+0.025) | -0.607 -0.089) | |||
28N—30H···55O | -0.743 (-0.003) | 0.440 (+0.025) | -0.572 (-0.054) | ||||
28N—31H···51O | -0.743 (-0.003) | 0.444 (+0.003) | -0.595 (-0.077) |
表3 [HHexen][TFSA]-nCO2主要氢键部位原子上的NPA电荷分布值(括号中为结合CO2后的电荷变化值)
构型 | 化学键 | 电荷分布值(电荷变化值)e | |||||
---|---|---|---|---|---|---|---|
26N | 28N | 27H | 30H | 31H | O | ||
CO2 | C—O | -0.518 | |||||
B4 | 26N—27H | -0.689 | 0.357 | ||||
28N—29H | -0.740 | ||||||
28N—30H | 0.415 | ||||||
28N—31H | 0.441 | ||||||
B4-1CO2 | 28N—31H···49O | -0.744 (-0.004) | 0.449 (+0.008) | -0.599 (-0.081) | |||
B4-2CO2 | 28N—30H···49O | -0.746 (-0.006) | 0.436 (+0.021) | -0.596 (-0.078) | |||
28N—31H···52O | -0.746 (-0.006) | 0.441 | -0.600 (-0.082) | ||||
B4-3CO2 | 28N—30H···49O | -0.745 (-0.005) | 0.440 (+0.025) | -0.608 (-0.090) | |||
28N—30H···55O | -0.745 (-0.005) | 0.440 (+0.025) | -0.570 (-0.052) | ||||
28N—31H···51O | -0.745 (-0.005) | 0.443 (+0.028) | -0.596 (-0.078) | ||||
B4-4CO2 | 28N—30H···49O | -0.743 (-0.003) | 0.440 (+0.025) | -0.607 -0.089) | |||
28N—30H···55O | -0.743 (-0.003) | 0.440 (+0.025) | -0.572 (-0.054) | ||||
28N—31H···51O | -0.743 (-0.003) | 0.444 (+0.003) | -0.595 (-0.077) |
构型 | 化学键 | 电荷分布值(电荷变化值)e | |||||||
---|---|---|---|---|---|---|---|---|---|
13N | 18N | 36N | 14H | 19H | 37H | 39H | O | ||
CO2 | C—O | -0.518 | |||||||
C4 | 13N—14H | -0.689 | 0.364 | ||||||
18N—19H | -0.682 | 0.342 | |||||||
36N—37H | -0.738 | 0.415 | |||||||
36N—39H | 0.444 | ||||||||
C4-1CO2 | 36N—39H···56O | -0.742 (-0.004) | 0.455 (+0.011) | -0.600 (-0.082) | |||||
C4-2CO2 | 18N—19H···57O | -0.688 (-0.006) | 0.358 (+0.016) | -0.557 (-0.039) | |||||
36N—39H···59O | -0.739 (-0.001) | 0.454 (+0.010) | -0.601 (-0.083) | ||||||
C4-3CO2 | 18N—19H···57O | -0.683 (-0.001) | 0.351 (+0.009) | -0.559 (-0.041) | |||||
13N—14H···63O | -0.686 | 0.369 (+0.005) | -0.549 (-0.031) | ||||||
36N—39H···59O | -0.738 | 0.450 (+0.006) | -0.601 (-0.083) | ||||||
C4-4CO2 | 18N—19H···57O | -0.683 (-0.001) | 0.350 (+0.008) | -0.526 (-0.008) | |||||
36N—39H···59O | -0.735 (+0.003) | 0.450 (+0.006) | -0.597 (-0.079) | ||||||
36N—37H···63O | -0.735 (+0.003) | 0.432 (+0.017) | -0.590 (-0.072) | ||||||
13N—14H···66O | -0.688 (+0.001) | 0.365 (+0.001) | -0.568 (-0.050) | ||||||
C4-5CO2 | 18N—19H···57O | -0.682 | 0.351 (+0.009) | -0.557 (-0.039) | |||||
36N—39H···59O | -0.737 (+0.001) | 0.450 (+0.006) | -0.612 (-0.094) | ||||||
13N—14H···66O | -0.687 (+0.002) | 0.370 (+0.006) | -0.547 (-0.029) | ||||||
36N—39H···63O | -0.737 (+0.001) | 0.450 (+0.006) | -0.573 (-0.055) |
表4 [HHexdien][TFSA]-nCO2主要氢键部位原子上的NPA电荷分布值(括号中为结合CO2后的电荷变化值)
构型 | 化学键 | 电荷分布值(电荷变化值)e | |||||||
---|---|---|---|---|---|---|---|---|---|
13N | 18N | 36N | 14H | 19H | 37H | 39H | O | ||
CO2 | C—O | -0.518 | |||||||
C4 | 13N—14H | -0.689 | 0.364 | ||||||
18N—19H | -0.682 | 0.342 | |||||||
36N—37H | -0.738 | 0.415 | |||||||
36N—39H | 0.444 | ||||||||
C4-1CO2 | 36N—39H···56O | -0.742 (-0.004) | 0.455 (+0.011) | -0.600 (-0.082) | |||||
C4-2CO2 | 18N—19H···57O | -0.688 (-0.006) | 0.358 (+0.016) | -0.557 (-0.039) | |||||
36N—39H···59O | -0.739 (-0.001) | 0.454 (+0.010) | -0.601 (-0.083) | ||||||
C4-3CO2 | 18N—19H···57O | -0.683 (-0.001) | 0.351 (+0.009) | -0.559 (-0.041) | |||||
13N—14H···63O | -0.686 | 0.369 (+0.005) | -0.549 (-0.031) | ||||||
36N—39H···59O | -0.738 | 0.450 (+0.006) | -0.601 (-0.083) | ||||||
C4-4CO2 | 18N—19H···57O | -0.683 (-0.001) | 0.350 (+0.008) | -0.526 (-0.008) | |||||
36N—39H···59O | -0.735 (+0.003) | 0.450 (+0.006) | -0.597 (-0.079) | ||||||
36N—37H···63O | -0.735 (+0.003) | 0.432 (+0.017) | -0.590 (-0.072) | ||||||
13N—14H···66O | -0.688 (+0.001) | 0.365 (+0.001) | -0.568 (-0.050) | ||||||
C4-5CO2 | 18N—19H···57O | -0.682 | 0.351 (+0.009) | -0.557 (-0.039) | |||||
36N—39H···59O | -0.737 (+0.001) | 0.450 (+0.006) | -0.612 (-0.094) | ||||||
13N—14H···66O | -0.687 (+0.002) | 0.370 (+0.006) | -0.547 (-0.029) | ||||||
36N—39H···63O | -0.737 (+0.001) | 0.450 (+0.006) | -0.573 (-0.055) |
构型 | CO2数量n | 电荷转移 | 二阶微扰能E(2)/kJ·mol-1 | 二阶微扰能总值E(2) sum/kJ·mol-1 |
---|---|---|---|---|
A4 | 1CO2 | LP(O40)→BD*(N20-H21) | 29 | 29 |
2CO2 | LP(O43)→BD*(N20-H21) | 28 | 34 | |
LP(O40)→BD*(N20-H23) | 4 | |||
LP(O40)→BD*(N20-H21) | 1 | |||
3CO2 | LP(O40)→BD*(N20-H21) | 26 | 43 | |
LP(O47)→BD*(N20-H23) | 13 | |||
B4 | 1CO2 | LP(O49)→BD*(N28-H31) | 29 | 29 |
2CO2 | LP(O49)→BD*(N28-H30) | 9 | 35 | |
LP(O52)→BD*(N28-H31) | 25 | |||
3CO2 | LP(O49)→BD*(N28-H30) | 2 | 42 | |
LP(O51)→BD*(N28-H31) | 27 | |||
LP(O55)→BD*(N28-H30) | 13 | |||
4CO2 | LP(O51)→BD*(N28-H31) | 22 | 40 | |
LP(O55)→BD*(N28-H30) | 15 | |||
C4 | 1CO2 | LP(O56)→BD*(N36-H39) | 27 | 27 |
2CO2 | LP(O59)→BD*(N36-H39) | 29 | 33 | |
3CO2 | LP(O59)→BD*(N36-H39) | 31 | 37 | |
LP(O63)→BD*(N13-H14) | 4 | |||
4CO2 | LP(O59)→BD*(N36-H39) | 28 | 36 | |
LP(O57)→BD*(N18-H19) | 3 | |||
LP(O63)→BD*(N36-H37) | 2 | |||
5CO2 | LP(O59)→BD*(N36-H39) | 20 | 29 | |
LP(O63)→BD*(N36-H39) | 2 | |||
LP(O66)→BD*(N13-H14) | 4 |
表5 PILs-nCO2主要氢键部位BCPs的二阶微扰能E(2)sum
构型 | CO2数量n | 电荷转移 | 二阶微扰能E(2)/kJ·mol-1 | 二阶微扰能总值E(2) sum/kJ·mol-1 |
---|---|---|---|---|
A4 | 1CO2 | LP(O40)→BD*(N20-H21) | 29 | 29 |
2CO2 | LP(O43)→BD*(N20-H21) | 28 | 34 | |
LP(O40)→BD*(N20-H23) | 4 | |||
LP(O40)→BD*(N20-H21) | 1 | |||
3CO2 | LP(O40)→BD*(N20-H21) | 26 | 43 | |
LP(O47)→BD*(N20-H23) | 13 | |||
B4 | 1CO2 | LP(O49)→BD*(N28-H31) | 29 | 29 |
2CO2 | LP(O49)→BD*(N28-H30) | 9 | 35 | |
LP(O52)→BD*(N28-H31) | 25 | |||
3CO2 | LP(O49)→BD*(N28-H30) | 2 | 42 | |
LP(O51)→BD*(N28-H31) | 27 | |||
LP(O55)→BD*(N28-H30) | 13 | |||
4CO2 | LP(O51)→BD*(N28-H31) | 22 | 40 | |
LP(O55)→BD*(N28-H30) | 15 | |||
C4 | 1CO2 | LP(O56)→BD*(N36-H39) | 27 | 27 |
2CO2 | LP(O59)→BD*(N36-H39) | 29 | 33 | |
3CO2 | LP(O59)→BD*(N36-H39) | 31 | 37 | |
LP(O63)→BD*(N13-H14) | 4 | |||
4CO2 | LP(O59)→BD*(N36-H39) | 28 | 36 | |
LP(O57)→BD*(N18-H19) | 3 | |||
LP(O63)→BD*(N36-H37) | 2 | |||
5CO2 | LP(O59)→BD*(N36-H39) | 20 | 29 | |
LP(O63)→BD*(N36-H39) | 2 | |||
LP(O66)→BD*(N13-H14) | 4 |
构型 | CO2数量n | 键临界点BCPs | 拉普拉斯值∇2ρc | 电子密度ρc | 电子密度总值ρc(sum) | 氢键能EHB/kJ·mol-1 | 氢键能总值EHB(sum)/kJ·mol-1 |
---|---|---|---|---|---|---|---|
A4 | 1CO2 | 40O···20N—21H | 0.0809 | 0.0190 | 0.0190 | 18 | 18 |
2CO2 | 43O···20N—21H | 0.0807 | 0.0189 | 0.0327 | 18 | 31 | |
40O···20N—23H | 0.0593 | 0.0138 | 13 | ||||
3CO2 | 40O···20N—21H | 0.0756 | 0.0179 | 0.0331 | 17 | 31 | |
47O···20N—23H | 0.0626 | 0.0152 | 14 | ||||
B4 | 1CO2 | 49O···28N—31H | 0.0806 | 0.0189 | 0.0189 | 18 | 18 |
2CO2 | 49O···28N—30H | 0.0695 | 0.0159 | 0.0347 | 15 | 33 | |
52O···28N—31H | 0.0813 | 0.0188 | 18 | ||||
3CO2 | 49O···28N—30H | 0.0468 | 0.0112 | 0.0443 | 10 | 41 | |
55O···28N—30H | 0.0597 | 0.0146 | 13 | ||||
51O···28N—31H | 0.0794 | 0.0185 | 18 | ||||
4CO2 | 49O···28N—30H | 0.0459 | 0.0108 | 0.0430 | 10 | 39 | |
51O···28N—31H | 0.0704 | 0.0168 | 15 | ||||
55O···28N—30H | 0.0635 | 0.0154 | 14 | ||||
C4 | 1CO2 | 56O···36N—39H | 0.0831 | 0.0195 | 0.0195 | 19 | 19 |
2CO2 | 59O···36N—39H | 0.0837 | 0.0196 | 0.0297 | 19 | 28 | |
57O···18N—19H | 0.0373 | 0.0100 | 9 | ||||
3CO2 | 57O···18N—19H | 0.0292 | 0.0077 | 0.0375 | 7 | 35 | |
63O···13N—14H | 0.0350 | 0.0097 | 8 | ||||
59O···36N—39H | 0.0867 | 0.0201 | 20 | ||||
4CO2 | 57O···18N—19H | 0.0341 | 0.0096 | 0.0476 | 9 | 44 | |
59O···36N—39H | 0.0799 | 0.0187 | 18 | ||||
63O···36N—37H | 0.0570 | 0.0132 | 12 | ||||
66O···13N—14H | 0.0210 | 0.0060 | 5 | ||||
5CO2 | 57O···18N—19H | 0.0333 | 0.0088 | 0.0442 | 8 | 41 | |
59O···36N—39H | 0.0625 | 0.0150 | 14 | ||||
66O···13N—14H | 0.0316 | 0.0089 | 8 | ||||
63O···36N—39H | 0.0475 | 0.0115 | 11 |
表6 PILs-nCO2构型BCP处的电子密度值ρc、拉普拉斯值∇2ρc和氢键能EHB
构型 | CO2数量n | 键临界点BCPs | 拉普拉斯值∇2ρc | 电子密度ρc | 电子密度总值ρc(sum) | 氢键能EHB/kJ·mol-1 | 氢键能总值EHB(sum)/kJ·mol-1 |
---|---|---|---|---|---|---|---|
A4 | 1CO2 | 40O···20N—21H | 0.0809 | 0.0190 | 0.0190 | 18 | 18 |
2CO2 | 43O···20N—21H | 0.0807 | 0.0189 | 0.0327 | 18 | 31 | |
40O···20N—23H | 0.0593 | 0.0138 | 13 | ||||
3CO2 | 40O···20N—21H | 0.0756 | 0.0179 | 0.0331 | 17 | 31 | |
47O···20N—23H | 0.0626 | 0.0152 | 14 | ||||
B4 | 1CO2 | 49O···28N—31H | 0.0806 | 0.0189 | 0.0189 | 18 | 18 |
2CO2 | 49O···28N—30H | 0.0695 | 0.0159 | 0.0347 | 15 | 33 | |
52O···28N—31H | 0.0813 | 0.0188 | 18 | ||||
3CO2 | 49O···28N—30H | 0.0468 | 0.0112 | 0.0443 | 10 | 41 | |
55O···28N—30H | 0.0597 | 0.0146 | 13 | ||||
51O···28N—31H | 0.0794 | 0.0185 | 18 | ||||
4CO2 | 49O···28N—30H | 0.0459 | 0.0108 | 0.0430 | 10 | 39 | |
51O···28N—31H | 0.0704 | 0.0168 | 15 | ||||
55O···28N—30H | 0.0635 | 0.0154 | 14 | ||||
C4 | 1CO2 | 56O···36N—39H | 0.0831 | 0.0195 | 0.0195 | 19 | 19 |
2CO2 | 59O···36N—39H | 0.0837 | 0.0196 | 0.0297 | 19 | 28 | |
57O···18N—19H | 0.0373 | 0.0100 | 9 | ||||
3CO2 | 57O···18N—19H | 0.0292 | 0.0077 | 0.0375 | 7 | 35 | |
63O···13N—14H | 0.0350 | 0.0097 | 8 | ||||
59O···36N—39H | 0.0867 | 0.0201 | 20 | ||||
4CO2 | 57O···18N—19H | 0.0341 | 0.0096 | 0.0476 | 9 | 44 | |
59O···36N—39H | 0.0799 | 0.0187 | 18 | ||||
63O···36N—37H | 0.0570 | 0.0132 | 12 | ||||
66O···13N—14H | 0.0210 | 0.0060 | 5 | ||||
5CO2 | 57O···18N—19H | 0.0333 | 0.0088 | 0.0442 | 8 | 41 | |
59O···36N—39H | 0.0625 | 0.0150 | 14 | ||||
66O···13N—14H | 0.0316 | 0.0089 | 8 | ||||
63O···36N—39H | 0.0475 | 0.0115 | 11 |
1 | 雷婷, 喻树楠, 周昶安, 等. 吸附法碳捕集固体胺吸附剂成型技术研究进展[J]. 化工进展, 2022, 41(12): 6213-6225. |
LEI Ting, YU Shunan, ZHOU Chang'an, et al. Research progress on the shaping technology of solid amine adsorbents for CO2 capture by adsorption method[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6213-6225. | |
2 | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. | |
3 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
4 | EGOROVA Ksenia S, GORDEEV Evgeniy G, ANANIKOV Valentine P. Biological activity of ionic liquids and their application in pharmaceutics and medicine[J]. Chemical Reviews, 2017, 117(10): 7132-7189. |
5 | KALIKIN Nikolai N, KOLESNIKOV Andrei L, BUDKOV Yury A. Polymerized ionic liquids on charged electrodes: New prospects for electrochemistry[J]. Current Opinion in Electrochemistry, 2022, 36: 101134. |
6 | SOMMER Julia, BROMBERGER Birgit, ROBBEN Christian, et al. Liquid-liquid extraction of viral particles with ionic liquids[J]. Separation and Purification Technology, 2021, 254: 117591. |
7 | ZENG Shaojuan, ZHANG Xiangping, BAI Lu, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chemical Reviews, 2017, 117(14): 9625-9673. |
8 | NOORANI Narmin, MEHRDAD Abbas, ZAREI DIZNAB Rana. Thermodynamic study on carbon dioxide absorption in vinyl imidazolium-amino acid ionic liquids[J]. Fluid Phase Equilibria, 2022, 557: 113433. |
9 | TU Zhuoheng, SHI Mingzhen, ZHANG Xiaomin, et al. Selective membrane separation of CO2 using novel epichlorohydrin-amine-based crosslinked protic ionic liquids: Crosslinking mechanism and enhanced salting-out effect[J]. Journal of CO2 Utilization, 2021, 46: 101473. |
10 | SHUKLA Shashi Kant, KHOKARALE Santosh G, Thai Q BUI, et al. Ionic liquids: Potential materials for carbon dioxide capture and utilization[J]. Frontiers in Materials, 2019, 6: 42. |
11 | KUMAR Pradeep, VARYANI Manish, KHATRI Praveen K, et al. Post combustion capture and conversion of carbon dioxide using histidine derived ionic liquid at ambient conditions[J]. Journal of Industrial and Engineering Chemistry, 2017, 49: 152-157. |
12 | MA Jing, ZHU Mingxuan, YANG Xueqing, et al. Different cation-anion interaction mechanisms of diamino protic ionic liquids: A density functional theory study[J]. Chemical Physics Letters, 2021, 774: 138615. |
13 | PATIL Kunal R, BARGE Seema S, BHOSALE Babasaheb D, et al. Influence of protic ionic liquids on hydration of glycine based peptides[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 265: 120378. |
14 | KONDRATENKO Yulia A, ANTUGANOV Dmitrii O, KADNIKOVA Olga Yu, et al. Synthesis, crystal structure and properties of tris(2-hydroxypropyl)ammonium based protic ionic liquids and protic molten salts[J]. Journal of Molecular Liquids, 2021, 324: 114717. |
15 | CAO Bobo, DU Jiuyao, LIU Shuangyue, et al. Carbon dioxide capture by amino-functionalized ionic liquids: DFT based theoretical analysis substantiated by FT-IR investigation[J]. RSC Advances, 2016, 6(13): 10462-10470. |
16 | NOORANI Narmin, MEHRDAD Abbas. CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies[J]. Fluid Phase Equilibria, 2020, 517: 112591. |
17 | ZHANG Jinrui, LV Naixia, CHAO Yanhong, et al. The interaction nature between hollow silica-based porous ionic liquids and CO2: A DFT study[J]. Journal of Molecular Graphics and Modelling, 2020, 100: 107694. |
18 | KUMAR Madhu Deepan, SUNNY Shilpa, JACCOB Madhavan. Conversion of CO2 to cyclic carbonates by metal-ethylenediamine complexes in ionic liquid: A DFT mechanistic study[J]. Journal of CO2 Utilization, 2022, 57: 101872. |
19 | MA Jing, WANG Yutong, YANG Xueqing, et al. DFT study on the chemical absorption mechanism of CO2 in diamino protic ionic liquids[J]. The Journal of Physical Chemistry B, 2021, 125(5): 1416-1428. |
20 | Hua ER, XU Yu, ZHAO Hong. Properties of mono-protic ionic liquids composed of hexylammonium and hexylethylenediaminium cations with trifluoroacetate and bis (trifluoromethylsulfonyl) imide anions[J]. Journal of Molecular Liquids, 2019, 276: 379-384. |
21 | HUA Er, MASAYASU Iida. Protonation properties, Applications and effects: Properties of protic ionic liquids comprising N-alkyl polyamines (Chapter 3) [M]. Nova Science Publishers, 2019, 237-247. |
22 | 徐宇, 花儿. 烷基乙二胺-CF3CO2型质子化离子液体的分子间氢键作用[J]. 高等学校化学学报, 2018, 39(9):1954-1960. |
XU Yu, HUA Er. Hydrogen bonding study on protic ionic liquids composed of N-alkylethylenediaminum cations with trifluoroacetic anion[J]. Chemical Journal of Chinese Universities, 2018, 39(9): 1954-1960. | |
23 | XU Yu, HUA Er, HAGHANI Abdolhossein. Structure and hydrogen bonding of mono-protic ionic liquids composed of N-alkylethylenediaminium cations and trifluoromethanesulfonate anion[J]. Materials Today Communications, 2021, 28: 102633. |
24 | TORKZADEH Mehrangiz, MOOSAVI Majid. DFT and COSMO-RS studies on dicationic ionic liquids (DILs) as potential candidates for CO2 capture: the effects of alkyl side chain length and symmetry in cations[J]. RSC Advances, 2022, 12(54): 35418-35435. |
25 | PARR Robert G. Density functional theory of atoms and molecules[C]//FUKUI K, PULLMAN B. Horizons of Quantum Chemistry: Proceedings of the Third International Congress of Quantum Chemistry Held at Kyoto. Japan: Springer Netherlands, 1980: 5-15. |
26 | ZHAO Yan, TRUHLAR Donald G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2008, 120(1): 215-241. |
27 | BOYS S F, BERNARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics, 2002, 100(1): 65-73. |
28 | Renqing LÜ, WU Chongchong, LIN Jin, et al. Theoretical study on interactions between trifluoromethanesulfonate(triflate) based ionic liquid and thiophene[J]. Journal of Molecular Liquids, 2017, 237: 289-294. |
29 | ANBU V, VIJAYALAKSHMI K A, KARUNATHAN R, et al. Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis[J]. Arabian Journal of Chemistry, 2019, 12(5): 621-632. |
30 | HUNT Patricia A, ASHWORTH Claire R, MATTHEWS Richard P. Hydrogen bonding in ionic liquids[J]. Chemical Society Reviews, 2015, 44(5): 1257-1288. |
31 | DOMAGALA Małgorzata, JABLONSKI Mirosław, DUBIS Alina T, et al. Testing of exchange-correlation functionals of DFT for a reliable description of the electron density distribution in organic molecules[J]. International Journal of Molecular Sciences, 2022, 23(23): 14719. |
32 | Julia CONTRERAS-GARCÍA, JOHNSON Erin R, KEINAN Shahar, et al. NCIPLOT: A program for plotting non-covalent interaction regions[J]. Journal of Chemical Theory and Computation, 2011, 7(3): 625-632. |
33 | 姜焱龙, 张妮, 李淡然, 等. 基于COSMO-RS方法筛选离子液体用于焦油脱除[J]. 化工学报, 2022, 73(4): 1704-1713. |
JIANG Yanlong, ZHANG Ni, LI Danran, et al. Selected ionic liquids by COSMO-RS method for tar removal[J]. CIESC Journal, 2022, 73(4): 1704-1713. | |
34 | 刘向阳. 气体在离子液体中溶解度的实验测量与理论计算[D]. 西安: 西安交通大学, 2017. |
LIU Xiangyang. Measurement and calculation of gas solubility in ionic liquid[D]. Xi'an: XI'an Jiaotong University, 2017. | |
35 | HUSSAIN Shahid, DONG Haifeng, ZENG Shaojuan, et al. Investigation uncovered the impact of anions on CO2 absorption by low viscous ether functionalized pyridinium ionic liquids[J]. Journal of Molecular Liquids, 2021, 336: 116362. |
36 | PINTO J, FABRE E, MURSHED S S. Evaluation of stability, viscosity and electrical conductivity of [C2mim][DCA] based ionanocolloids[J]. Heat and Mass Transfer, 2022: 1-7. |
37 | YANG Fuxin, WANG Bangju, JIAO Yanhao, et al. Density and viscosity of three ionic liquids with 2,2,2-trifluoroethanol[J]. The Journal of Chemical Thermodynamics, 2023, 181: 107038. |
38 | ZHANG Xiaosong, PAN Jiawei, WANG Liang, et al. COSMO-based solvent selection and Aspen plus process simulation for tar absorptive removal[J]. Applied Energy, 2019, 251: 113314. |
39 | 吴进, 张承龙, 王瑞雪, 等. 离子液体吸收废印刷线路板热拆解过程中挥发性有机物——基于COSMO-RS模型[J]. 中国环境科学, 2020, 40(5): 1946-1952. |
WU Jin, ZHANG Chenglong, WANG Ruixue, et al. Absorbing volatile organic compounds discharged during thermal dismantling of waste printed circuit boards using ionic liquids—Based on COSMO-RS model[J]. China Environmental Science, 2020, 40(5): 1946-1952. | |
40 | LIU Yanrong, YU Hang, SUN Yunhao, et al. Screening deep eutectic solvents for CO2 capture with COSMO-RS[J]. Frontiers in Chemistry, 2020, 8: 82. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[5] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[10] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[11] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[12] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
[13] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[14] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[15] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |